An approach is provided to automatically replicate content to certain servers in a networking environment based on, amongst other metrics, location of third parties accessing information in a social networking environment. The approach includes obtaining content from a user within a networked environment and analyzing information of one or more third parties that have access to the networked environment and who have an association with the user. The approach further includes replicating the content to one or more servers within the networked environment based on the analyzed information of the one or more third parties.
Technical solutions are described for optimizing operation of a server cluster. An example method includes receiving a job request that executes using a set of data blocks, the job request being associated with an expected completion time. The cluster server is used to identify a set of replica servers, wherein each server from the set of replica servers contains the set of data blocks. In response to each server from the set of replica servers estimating a completion time for the job request that is more than the expected completion time, a new server is initiated, the set of data blocks is relocated from a first server from the set of replica servers to the new server, and the job request is allocated to the new server.
Systems and methods of the present invention for maintaining network data distribution are provided. Network data may be distributed in such as manner as to allow a network session to weather interrupted communications between host and clients without significant loss of data. Embodiments of the present invention provide for one or more clients to serve as backup host(s) for the network session. When the other clients transmit data to the host, they may also transmit the data to one or more backup hosts if there are any indications of interrupted communication.
A communications system and a communication method are disclosed. The communication method includes: sending, by a first computing node, a communication manner parsing request to a management node, where the communication manner parsing request includes an identifier of the first computing node and an identifier of a second computing node; determining, by the management node, information about a physical communication manner between the first computing node and the second computing node according to the communication manner parsing request and communication manner reference information, where the communication manner reference information includes system topology information and a system physical resource allocation result; sending, by the management node, the information about the physical communication manner to the first computing node; and communicating, by the first computing node, with the second computing node based on the information about the physical communication manner. Embodiments of the present disclosure can improve communication efficiency.
A system and method for identifying distributed attacks, such as, but not limited to, distributed denial of service attacks and botnet attacks, in a first network serviced by a first carrier and configured to alert a second network serviced by a second carrier that is different from the first carrier is disclosed. Once an attack has been identified, an attack alert is generated and provided to the second network or other aspects of the first network, or both. The attack alerts may be distributed dynamically with the second network via diameter based security protocol Rs. Such system and method may mitigate distributed malicious attacks by sharing destination internet protocol and bad international mobile subscriber identity information across carriers.
The present disclosure relates generally to threat detection, and more particularly, to techniques for analyzing security events using dynamic policies and displaying a consolidated view of active threats and user activity including the dynamic policies being triggered by the active threats and user activity. Some aspects are directed to the concept of a policy bus for injecting and communicating the dynamic policies to multiple enforcement entities and the ability of the entities to respond to the policies dynamically. Other aspects are directed providing a consolidated view of active threat categories, a count of policies being triggered for each threat category, and associated trends. Yet other aspects are directed to providing a consolidated view of users, applications being accessed by users, and the access policies, if any, implicated by the such accesses.
A device may receive policy information associated with a first application group and a second application group. The device may receive network topology information associated with a network. The device may generate a first policy based on the policy information and the network topology information, and generate a second policy based on the policy information and the network topology information. The device may provide, to the virtual network device, information associated with the first policy to permit the virtual network device to implement the first policy in association with network traffic transferred between the first application group and the second application group. The device may provide, to the physical network device, information associated with the second policy to permit the physical network device to implement the second policy in association with network traffic transferred between the first application group and the second application group.
A computer-implemented method for automatically blocking Web Proxy Auto-Discovery Protocol (WPAD) attacks may include (i) automatically detecting, by a computing device, a WPAD request for a configuration file, (ii) identifying, by the computing device, a server attempting to fulfill the WPAD request for the configuration file, (iii) determining, by the computing device, that the server is not included in a whitelist of WPAD servers for the configuration file, and (iv) automatically performing, by the computing device and based on the determination that the server is not included in the whitelist, a security action to secure the WPAD request for the configuration file. Various other methods, systems, and computer-readable media are also disclosed.
Techniques for malicious HTTP cookies detection and clustering are disclosed. In some embodiments, a system, process, and/or computer program product for malicious HTTP cookies detection and clustering includes receiving a sample at a cloud security service; extracting a cookie from network traffic associated with the sample; determining that the cookie is associated with malware; and generating a signature based on the cookie.
Examining applications for structural indications of repackaging is disclosed. A mobile application is received. The mobile application is analyzed to determine whether the mobile application matches a build-related file format fingerprint indicative of application repackaging. In response to a result of the analysis, the mobile application is categorized as a repackaged application.
When a security authentication request sent by a terminal is received, an identity authentication solution includes acquiring network environment information and user behavior data according to the security authentication request, then determining, according to the network environment information and the user behavior data, whether a current operation is a machine attack, and acquiring a CAPTCHA of a predetermined type according to a predetermined policy and delivering the CAPTCHA to the terminal if the current operation is a machine attack, to perform identity authentication, or determining that security authentication succeeds if the current operation is not a machine attack.
An approach is provided for sharing valid token(s) across application instances. If refresh token rotation is used, (i) a token request is received which includes a number of tokens required, (ii) access and refresh token pairs are generated and shared so that a total number of the pairs equals the number of tokens, and (iii) the access and refresh token pairs are sent to a client so that in response to token requests, the application instances obtain respective access and refresh token pairs. If refresh token rotation is not used, (iv) a request for a refresh token is received, (v) an existing access token is validated, where the access token is bound to the refresh token, and (vi) if the existing access token is expired, a new access token is generated and sent to the client; otherwise, the existing access token is sent to the client.
Examples provided herein are directed to a computing device and media playback system sharing access to a media service corresponding to a media application installed on the computing device. In one example, a media playback system may be configured to (i) receive from the computing device an authorization code that corresponds to a media application installed on the computing device that is authorized to access media from a media service, (ii) transmit to the media service an authorization request with the authorization code, (iii) receive from the media service an authorization token that facilitates obtaining media from the media service, and (iv) transmit to the media service a request for media for playback by the media playback system, where the request for media includes the authorization token.
A management system for managing at least one function to be executed in a communication terminal. The management system includes a reception unit that receives identification information about the communication terminal from the communication terminal; a storage unit that stores a service period set for each of functions associated with pieces of identification information about communication terminals; a specification unit that specifies, from the functions associated with the received identification information, functions within the service periods; and a transmission unit that transmits function information indicating the specified functions to the communication terminal.
In currently available mobile devices (e.g., a user equipment (UE)), no authentication occurs at the mobile device to answer an incoming call at the mobile device. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for secure call answering are provided. The apparatus is a first UE. The apparatus receives an incoming call originated from a second UE. The apparatus determines whether the incoming call originated from the second UE is a secure incoming call. The apparatus also receives a secure authentication input upon determining that the incoming call is a secure incoming call. Further, the apparatus determines whether the secure authentication input matches with authentication information upon receiving the secure authentication input. Additionally, the apparatus answers the received secure incoming call originated from the second UE when the received secure authentication input matches the authentication information.
Systems and methods involve managing exhaustible electronic resources, such as IPv4 addresses. A determination to allocate an internet protocol (IP) address can be made based at least in part on an amount of traffic that the IP address receives when not allocated to a customer and another amount of traffic received from a prospective customer. Information directed to the allocated IP address can be received and routed to a network associated with the customer via a connection configured to share information using the IP address.
When an electronic mail is transmitted, a computer outputs to a display device a transmission confirmation screen on which a destination or an attached file name is displayed, the destination or the attached file name being different from a destination or an attached file name that has been set by a user in the electronic mail, and on which whether transmission of the electronic mail will be performed is selectable. Upon receipt of selection of whether the transmission will be performed, the computer outputs to the display device message information that varies according to a result of the selection of whether the transmission will be performed on the transmission confirmation screen.
A client apparatus transmits to a server apparatus email information including destination email addresses of an email and information about a first file selected as a file to be attached, receives from the server apparatus at least one storage destination which is accessible to all users corresponding to the destination email addresses and in which a second file relating to the first file is stored as at least one storage destination candidate for the first file, displays the received storage destination candidate on a display, stores the first file in a storage destination corresponding to a storage destination candidate selected by a user from the displayed at least one storage destination candidate, and transmits to the destination email addresses an email including a link to the stored first file.
The present disclosure relates to systems, methods, electronic devices and applications for presentation, configuration and operation of an application including a user interface. In one embodiment, a method includes detecting a command for a user interface of the device, wherein the command is associated with a card element displayed by the user interface, wherein the user interface and card element are displayed by the device and wherein operation of device for presentation of the user interface is based on a platform for operation with card elements. The method also includes determining at least one operation of the device based on the command and the platform for operation with the card element, wherein determining includes interoperation of the user interface with the platform and controlling, by the controller, operation of the device based on said determining. Another embodiment is directed to a device configured to present a user interface.
A computer-implemented method for a user device including receiving a notification by a processing device of a user device a first user, the notification notifying the first user that a second user has shared a media item with the first user, the notification including a reference to the media item. The method further includes receiving a request of the first user to view the media item. The method further includes in response to the request of the first user, causing a messaging session between the first user and the second user to be provided, and presenting the media item to the first user in the messaging session.
An adaptive network repeater is disclosed for electronically connecting first and second subnetworks. The adaptive network repeater includes a first network interface coupled to the first subnetwork, a second network interface coupled to the second subnetwork, and a controller that monitors communication link status between the first and second subnetworks across the adaptive network repeater. Data received from the first subnetwork at the first network interface is retransmitted to the second subnetwork through the second network interface, and data received from the second subnetwork at the second network interface is retransmitted to the first subnetwork through the first network interface. When the controller determines that the first and second subnetworks want to communicate across the adaptive network repeater at incompatible communication speeds, the controller determines a compatible communication speed and causes the first and second subnetworks to communicate across the adaptive network repeater at the compatible communication speed.
In an example, there is disclosed a computing apparatus, having: a network interface configured to provide a plurality of queues; an application; and one or more logic elements comprising a queuing engine to: inspect an incoming packet; and assign the incoming packet to a dedicated queue for the application based on a classifier. There is also disclosed a method of providing a queuing engine, and one or more tangible, non-transitory computer-readable storage mediums having stored thereon executable instructions for providing a queuing engine.
A control device includes an information analysis unit that measures communication volume in each flow included in input traffic and generates traffic information including information representing at least the measured communication volume of each of the flows and a time at which measurement is taken; a reduction target selection unit that generates ranking information representing a ranking which is a rank order of a communication volume of each of the flows in the input traffic and selects a flow having the ranking that has a trend to change in a particular direction as a reduction target flow whose communication volume is to be reduced; and a traffic control unit that reduces a communication volume on the reduction target flow, and transmits the reduction target flow subjected to the reduction processing together with another flow included in the input traffic as output traffic.
Connection based selection of a network congestion control process is presented herein. A system can comprise a processor; and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations, comprising: storing communication congestion control procedures into a module of a kernel of the system, determining a connection attribute for a connection corresponding to a connection request received from a device; and selecting, via the module based on the connection attribute, a communication congestion control procedure of the communication congestion control procedures for servicing of the connection request. In an example, the determining the connection attribute comprises determining a round-trip time of the connection, determining a bandwidth-delay product of the connection, determining whether the connection is a wireless connection, and determining a bandwidth of the connection.
Apparatus to predict end of streaming media using a prediction model are disclosed herein. Examples disclosed herein comprise a predictor to determine a bandwidth rate associated with presentation of streaming media based on monitored traffic between a user device and the streaming media, a modeler to generate a prediction model based on characteristics of the bandwidth rate, and a forecaster to determine that a time when an output of the prediction model is below a minimum bandwidth threshold is a session end time for a streaming media session, the session end time corresponding to when the user device stops receiving the streaming media.
The disclosed computer-implemented method for enforcing data loss prevention policies may include (i) identifying an application installed on the computing device, where the computing device is capable of transmitting data to other computing devices via a wireless technology standard for exchanging data over short distances, (ii) examining the application for a module that indicates that the application is capable of transferring files via the wireless technology standard, (iii) monitoring for initiations of connections via the wireless technology standard by the application, (iv) monitoring, in response to detecting an initiation of a connection via the wireless technology standard by the application, file system access by the application, (v) determining that the application is attempting to open a file, and (vi) analyzing the file to determine if transferring the file via the wireless technology standard violates a data loss prevention policy. Various other methods, systems, and computer-readable media are also disclosed.
In one embodiment, a server determines a trigger to diagnose a software as a service (SaaS) pipeline for a SaaS client, and sends a notification to a plurality of SaaS nodes in the pipeline that the client is in a diagnostic mode, the notification causing the plurality of SaaS nodes to establish taps to collect diagnostic information for the client. The server may then send client-specific diagnostic messages into the SaaS pipeline for the client, the client-specific diagnostic messages causing the taps on the plurality of SaaS nodes to collect client-specific diagnostic information and send the client-specific diagnostic information to the server. The server then receives the client-specific diagnostic information from the plurality of SaaS nodes, and creates a client-specific diagnostic report based on the client-specific diagnostic information.
Methods, systems, and computer program products are described herein for minimizing the downtime for nodes in a network-accessible server set. The downtime may be minimized by determining an optimal timeout value for which a fabric controller waits to perform a recovery action. The optimal timeout value may be determined for each cluster in the network-accessible server set. The optimal timeout value advantageously reduces the overall downtime for customer workloads running on a node for which contact has been lost. The optimal timeout value for each cluster may be based on a predictive model based on the observed historical patterns of the nodes within that cluster. In the event that an optimal timeout value is not determined for a particular cluster (e.g., due to a lack of observed historical patterns), the fabric controller may fall back to a less than optimal timeout value.
A computer-implemented method for determining service flow rank based on service flow dependency is provided. The method includes receiving a plurality of data flow information for a plurality of data flows. Each data flow of the plurality of data flows includes a source, a destination, a start time, and an associated service. The method also includes determining a plurality of dependency sets based on the plurality of data flow information. Each dependency set of the plurality of dependency sets includes at least a first data flow and a second data flow. The method further includes calculating a plurality of dependency strengths based on the plurality of dependency sets, calculating a plurality of total service scores based on the first data flows of the plurality of dependency sets, and calculating a plurality of service flow ranks based on the plurality of dependency strengths and the plurality of total service scores.
Techniques are disclosed for reducing the time required to instantiate network services in a service provider network to service requests by subscriber devices. In one example, an orchestration engine pre-creates pools of different virtual network functions (VNFs). Upon receiving a request to service network traffic from a subscriber device, the orchestration engine dynamically creates a service chain using the appropriate VNFs from the pools of different VNFs. In another example, the orchestration engine pre-creates pools of common service chains. Upon receiving a request to service network traffic from a subscriber device, the orchestration engine selects the appropriate service chain from the pools of service chains. After configuring the service chain, the orchestration engine issues instructions to a Software-Defined Networking (SDN) controller causing the SDN controller to update forwarding information in the service provider network to enable the service chain to service the subscriber traffic.
A method includes configuring, by a cloud provisioning server, a first user identity to execute a provisioning to provision an instance. The instance to be provisioned includes one of an instantiated software resource and a computing service. The method also includes configuring a second user identity to be an approver of the provisioning. The method also includes performing provisioning of the instance. The provisioning is executed under the first user identity, and the second user identity has provided approval of the provisioning.
A method for measuring quality of a service running on a terminal includes sending, by the terminal, a measurement request message to a network management device, where the measurement request message requests the network management device to measure the quality of the service, receiving, by the terminal, measurement configuration information from the network management device in response to the measurement request message, coloring a packet of a service stream within a preset measurement period according to the measurement configuration information to obtain a colored packet, and sending, by the terminal, at least one of quantity information or time stamp information of the colored packet to the network management device. Hence, the quality of the service running on the terminal is comprehensively measured.
A digital triggering system for processing data relating to a signal received is described, with an analog-to-digital converter, an IQ data source providing IQ data, a first digital signal processor, and at least a second digital signal processor. The first digital signal processor is connected with the IQ data source via a first signal path. The second digital signal processor is connected with the IQ data source via a second signal path. The first digital signal processor has at least a first signal processing parameter. The second digital signal processor has at least a second signal processing parameter. The first signal processing parameter and the second signal processing parameter are independent from each other. The first digital signal processor generates a trigger signal based upon a characteristic of the IQ data obtained from the IQ data source. The first digital signal processor triggers the second digital signal processor via the trigger signal to acquire IQ data obtained from the IQ data source. Further, a method for processing data is described.
The present disclosure includes systems and techniques relating to an integer non-uniform constellation (NUC) high-order M-QAM. In some implementations, M is no less than 1024. Each of M constellation points of the integer NUC M-QAM has respective integer real and imaginary coordinates. A bit pattern is received and mapped to integer real and imaginary coordinates of one of the M constellation points according to a mapping rule of the integer NUC M-QAM. A transmission signal is modulated in accordance with the integer real and imaginary coordinates of the one of the M constellation points of the integer NUC M-QAM.
A system for wirelessly transmitting data provides an input for receiving an input data stream. First modulation circuitry applies quantum level overlay (QLO) modulation to the input data stream to generate a QLO modulated data stream. Second modulation circuitry applies quantum level orthogonal time frequency space (OTFS) modulation to the QLO modulated data stream to create an OTFS/QLO modulated data stream. A transmitter transmits the OTFS/QLO modulated data stream.
Methods and systems for vehicle to operator communication for preparation for a meeting are disclosed. The methods and systems can include collecting meeting information regarding a meeting, transmitting the meeting information to an operator through a communication system, receiving emotional inputs reflecting an emotional state of a party, determining a phased emotional state for the party using the emotional inputs, and transmitting state information to the operator, the state information including the phased emotional state.
Computerized aspects monitor listening virtual local area network ports for multicast packets from hypervisor virtual machines that meet a multicast group definition, and retrieve source addresses for original hypervisor sources of detected ones of the multicast packets, bind the retrieved addresses to the multicast packets to generate encapsulated packets, and forward the encapsulated packets as user datagram protocol unicast packets to a destination address of a virtual extensible helper daemon defined for a destination hypervisor of a second virtual local area network. The destination address meets the multicast group definition for the first virtual local area network, and the second virtual local area network is geographically remote from and different from the first virtual local area network, and thus the aspects send the first user datagram protocol unicast packet through an internet protocol router to the designated receiving port.
In a method for generating a cryptographic key in a system-on-a-chip having a hardware-programmable logic unit, a circuit region of the hardware-programmable logic unit is configured in such a way that a first physical unclonable function is executed in the circuit region in order to generate a first cryptographic key, and the circuit region is reconfigured in such a way that (i) a further physical unclonable function is executed in order to generate a further cryptographic key or (ii) another functionality that does not encompass a physical unclonable function is executed.
Systems and techniques are described herein for managing and negotiating SSL certificates as part of a handshake between a client computing device and a website hosting infrastructure. Certificates for a website are stored in a common storage and are lazy-loaded into cache memory when the website is requested by a client. Certificates are served by the hosting infrastructure responsive to a handshake request from a client by determining if a certificate for a hostname in the handshake request is in cache memory. When available, a cached certificate is served. When a cached certificate for the hostname is unavailable, a certificate is retrieved from the common storage, placed in cache memory, and served. OCSP stapling data is lazy-loaded and served also from the cache memory. Hence, a certificate is available immediately upon deployment, without costly reconfiguration of the hosting platform to accommodate new certificates and new hostnames.
A policy group associated with one or more data packets received from a workload is determined. The one or more data packets are encrypted with a certificate associated with the policy group. The encrypted one or more data packets are sent to an endpoint.
A method for authenticating a prover to a verifier, the prover being provided with a proving key paired to a verification key registered with the verifier, wherein the proving key can be obtained by transforming a protected key and a secret (S) using a transformation (E), characterized in that the prover stores the protected key and does not store the corresponding proving key nor the corresponding verification key in clear, with the exception of storage in transient memory.
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for enhancing a device provisioning protocol (DPP) to support multiple configurators. In one aspect, a first configurator device can export a configurator key package. In one aspect, the configurator key package may be used for backup and restore of the configurator keys. The configurator key package may include a configurator private signing key and, optionally, a configurator public verification key. A second configurator device may obtain the configurator key package and also may obtain decryption information which can be used to decrypt the configurator key package. Thus, in another aspect, both the first configurator device and the second configurator device can use the same configurator keys with the device provisioning protocol to configure enrollees to a network.
An example method may include receiving, at a session key service, a first session key and a first public key of a client device to be authenticated to a web server. The first session key being encrypted by the client device using a second public key of the web server. The web server is a subscriber of the session key service hosted in a cloud-based environment. The method may also include decrypting, using a first private key of the web server, the first session key to obtain a plaintext session key, encrypting the plaintext session key using the first public key of the client device to generate a second session key, and sending the second session key to the web server to facilitate a decryption of the second session key by the client device for an authentication of the client device to the web server.
Disclosed is a clock data recovery (CDR) device including a master lane circuit and a plurality of slave lane circuits. The master lane circuit includes: a clock multiplication unit including a phase frequency detector (PFD), a charge pump (CP), a voltage-controlled oscillator (VCO), and a loop divider; a master lane sampling circuit; a master lane phase detector (PD); and a master lane multiplexer coupled between the master lane PD and the CP and between the PFD and the CP. Each slave lane circuit includes: a slave lane sampling circuit (SLS); a slave lane PD; a slave lane digital loop filter; a phase rotator (PR); and a slave lane multiplexer coupled between the VCO and the SLS and between the PR and the SLS, in which the master lane multiplexer and the slave lane multiplexers are configured to have the CDR device operate in one of multiple modes.
According to one embodiment of the present invention, a method by which a terminal reports a channel state on the basis of a channel state information-reference signal (CSI-RS) in a wireless communication system can comprise the steps of: transmitting, to a base station, terminal capability information related to the maximum number of CSI processes which can be simultaneously updated or calculated by the terminal in which a shortened processing time has been set; receiving an aperiodic CSI request from the base station; and, according to the aperiodic CSI request, updating or calculating CSI in a CSI reference resource at the point of time set for the shortened processing time, on the basis of the terminal capability information and transmitting the updated or calculated CSI to the base station.
According to an aspect of the present invention, a method for transmitting a Demodulation Reference Signal (DMRS) performed by a terminal in a wireless communication system that supports a Narrow Band (NB)-Internet of Things (IoT) includes generating a DMRS sequence by considering a single subcarrier transmission or a multiple subcarrier transmission; mapping the generated DMRS sequence to one or more symbols in time domain; and transmitting the DMRS to a base station through the mapped symbols, where each element of the generated DMRS sequence is sequentially mapped to each symbol of M symbols, when the DMRS is transmitted through the single subcarrier, and where the generated DMRS sequence is mapped to N symbols, when the DMRS is transmitted through the multiple subcarriers.
Methods and apparatus are provided for a base station to trigger transmissions of sounding reference signals (SRS) from one or multiple user equipments (UEs) on one or multiple cells and for a UE to determine a power, a time instance, and other parameters for SRS transmissions in response to the triggering. A SRS transmission can be on a cell where a UE is not configured to transmit data or control information.
Embodiments of the present disclosure relate to a method and a device of configuring downlink control information. Specifically, the corresponding demodulation reference signal configuration information is set for three kinds of demodulation reference signal enhancement situations respectively and is indicated by the downlink control information according to the embodiments of the present disclosure. According to one embodiment of the present disclosure, a base station sends the downlink control information to user equipment, the downlink control information including a demodulation reference signal configuration index that indicates the demodulation reference signal configuration information, and the demodulation reference signal configuration information including one item in the demodulation reference signal configuration information set. In the case of using one codebook, the demodulation reference signal configuration information set includes: a first combination set of one layer, the antenna port 11 or 13, and a scrambling sequence number. In the case of using two codebooks, the demodulation reference signal configuration information set includes: a second combination set of two, three, or four layers, at least one of the antenna ports 7, 8, 11, and 13, and a scrambling sequence number.
Wireless environment information is obtained by aggregating data corresponding to wireless signals detected by wireless devices in the wireless environment. A wireless device is configured to obtain additional information for a wireless environment based on determining that wireless environment information is insufficient. One or more devices are configured based at least on the additional information.
In some embodiments, an apparatus includes a memory and a processor operatively coupled to the memory. The processor is configured to be operatively coupled to a first optical transponder and a second optical transponder. The processor is configured to receive, from the second optical transponder, a signal representing a skew value of an optical signal and a signal representing a bit-error-rate (BER) value of the optical signal. The skew value is associated with a skew between an in-phase component of the optical signal and a quadrature component of the optical signal. The processor is configured to determine, based on at least one of the skew value or the BER value, if a performance degradation of the first optical transponder satisfies a threshold. The processor is configured to send a control signal to the first optical transponder to adjust a pulse shaping or a data baud rate of the first optical transponder.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reducing jitter and latency in a PON. In one aspect, an optical network unit includes a downstream optical receiver configured to receive downstream traffic over a first wavelength; a first upstream optical transmitter having a first data rate; a second upstream optical transmitter having a second data rate that is higher than the first data rate; and a controller configured to direct upstream traffic to one of the first upstream optical transmitter or the second upstream optical transmitter depending on a traffic type of the traffic. Traffic having a control plane traffic type is directed to the first upstream optical transmitter and traffic having a data plane traffic type is directed to the second upstream optical transmitter.
A multi-mode wavelength-division multiplexing (WDM) receiver includes a receiver head to receive a free-space optical (FSO) signal. A multi-mode demultiplexers (demux) is coupled to the receiver head via a multi-mode fiber to generate a number of optical signals based on the FSO signal. A number of repeaters modify the optical signals and generate a number of single-mode optical signals.
Automatic optical link calibration systems and methods include, in an optical section with an Optical Add-Drop Multiplexer (OADM) multiplexer, an OADM demultiplexer, and zero or more in-line optical amplifiers between the OADM multiplexer and the OADM demultiplexer, wherein the optical section includes integrated measurement equipment, and wherein the OADM multiplexer and the OADM demultiplexer have a route and select architecture, obtaining measurement data from the integrated measurement equipment subsequent to turn up; determining an optimal target launch power profile per fiber span in the optical section based on the measurement data; configuring channel holders at the OADM multiplexer to meet the optimal target launch power profile per fiber span; and calibrating each fiber span to determine settings of equipment at the OADM multiplexer, the OADM demultiplexer, and the zero or more in-line optical amplifiers.
A media automation system controls the ability of local stations to automatically replace certain scheduled items. A show is identified as a restricted show, with respect to exclusion of content associated with at least one advertiser. Restriction rules, which are configured to prevent content associated with the at least one advertiser from being scheduled during the restricted show are obtained, and a master broadcast log is generated based on a broadcast schedule and the restriction rules. The local stations are prevented from successfully performing automated replacement of content during the restricted show by inserting a flag into metadata associated with the master broadcast log, the flag specifying a blackout attribute. Buffers can be established around restricted shows, so that spot breaks near restricted shows can also be restricted. A playout system can perform validation checks to ensure that advertisements from advertisers included in the list are not improperly scheduled.
An example method may include a processing system of a channel sounding receiver having a processor receiving from a base station, at a location, a channel sounding waveform via a plurality of carriers, sampling the channel sounding waveform via the plurality of carriers to generate a plurality of per-carrier time domain sample sets, and processing the plurality of per-carrier time domain sample sets via a plurality of discrete Fourier transform modules to provide a plurality of per-carrier frequency domain sample sets. The method may further include the processing system aligning the plurality of per-carrier frequency domain sample sets in gain and phase to provide a combined frequency domain sample set and measuring a channel property at the location based upon the combined frequency domain sample set.
In one embodiment, a method includes determining a received power at a receiving antenna mounted to an antenna measurement system from a transmitting antenna mounted to a device under test (DUT) in motion relative to the antenna measurement system; determining one or more first orientation parameters of the antenna measurement system; determining one or more second orientation parameters of the DUT; and determining an antenna pattern of the transmitting antenna based on the received power, the first orientation parameters, and the second orientation parameters.
Embodiments of the present disclosure relate to a method and apparatus for transmitting an image. The method includes converting, by a first device, an image to be transmitted into a number of sets of feature data according to a preset conversion rule; performing, by the first device, music composition according to preset music composition rules to obtain a music in accordance with musical tone rules through making each set of the number of sets of feature data correspond to one musical element; and playing, by the first device, the music to a second device. An image transmission manner utilizing a sound wave that is hearable to the human ear may be implemented.
Embodiments of the present application provide an information transmission method, a coordinator, and a terminal node in an optical wireless communications network. The method includes: receiving a request to send (RTS) frame sent by a sending node by using a first bandwidth, wherein the RTS frame comprises first indication information; determining a second bandwidth based on the first indication information, wherein the second bandwidth is a sending bandwidth used when the sending node sends to-be-sent information and a receiving bandwidth used when the receiving node receives the to-be-sent information; and sending a clear to send (CTS) frame to the sending node by using a third bandwidth.
An FSO communication system includes a laser, an optical detector and a first optical adjustment module and a controller. The laser is configured to emit an optical signal. The optical detector is configured to receive an optical signal from the first optical adjustment module. The controller is configured to obtain an optical power of an optical signal received by the optical detector; and generate a control command based on the optical power and transmit the control command. The first optical adjustment module is configured to: receive the control command and the optical signal emitted by the laser; adjust, in response to the control command, the optical signal emitted by the laser to cause the optical power of the optical signal received by the optical detector to be in a preset reasonable range; and transmit the adjusted optical signal to the optical detector.
A method for uplink and downlink scheduling in a satellite long-term evolution (LTE) network includes receiving, at a satellite base station, a scheduling request from a terminal device. The method further includes transmitting an uplink and downlink grant to the terminal device with an initial allocation that supports the configured data rate. User data is sent and received from the terminal device based on this initial allocation without continually sending grants to the terminal device. The method also supports changes to the persistent allocation based on updated user traffic requirements as indicated by the terminal device.
A method for of communication in a satellite LTE network by a satellite base station includes transmitting to a terminal device in a satellite beam of the satellite base station a frame having embedded timing information. The timing information includes a lowest delay time associated with the satellite beam. An uplink acquisition message is received from the terminal device. The uplink acquisition message is received with a first timing advance (TA) value estimated by the terminal device based on the lowest delay time. An arrival time associated with the uplink acquisition message is estimated, and a second TA value is determined based on the estimated arrival time. The terminal device uses the sum of first TA and second TA to adjust its timing in subsequent transmissions.
Systems and methods are described for radio frequency (RF) calibration in a multiple antenna system (MAS) with multi-user (MU) transmissions (“MU-MAS”) exploiting uplink/downlink channel reciprocity. The RF calibration is used to compute open-loop downlink precoder based on uplink channel estimates, thereby avoiding feedback overhead for channel state information as in closed-loop schemes. For example, a MU-MAS of one embodiment comprises a wireless cellular network with one or multiple beacon stations, multiple client devices and multiple distributed antennas operating cooperatively via precoding methods to eliminate inter-client interference and increase network capacity.
A method for a terminal transmitting channel state information (CSI) in a wireless access system that supports massive multiple-input multiple-output (MIMO) according to one embodiment of the present invention may comprise the steps of: receiving CSI configuration information for reporting CSI; and transmitting CSI and identification information with respect to the partial channel corresponding to the CSI of the full channel according to the massive MIMO, on the basis of the CSI configuration information.
The present disclosure discloses a distributed antenna system. The DAS includes a signal source, a first signal generator, a first passive mixer, and a first antenna. The first signal generator is configured to: generate a first local-frequency signal, and send it to the first passive mixer by using a passive DAS line. The first passive mixer is configured to receive the first local-frequency signal, and a downlink radio frequency signal having a second radio frequency band. The first passive mixer is further configured to: perform frequency mixing processing on the received downlink radio frequency signal having the second radio frequency band by using the first local-frequency signal, to form a first downlink radio frequency signal having a first radio frequency band, and then send it to the first antenna. The first antenna is configured to transmit the received first downlink radio frequency signal having the first radio frequency band.
A system for digital self-interference cancellation includes a filter that generates a reduced-noise digital residue signal; a channel estimator that generates a current self-interference channel estimate from a digital transmit signal, the reduced-noise digital residue signal, and past self-interference channel estimates; a controller that dynamically sets the digital transform configuration in response to changes in a controller-sampled digital residue signal; a predictor that modifies output of the channel estimator to compensate for a first time delay incurred in tuning the system for digital self-interference cancellation; and a channel memory that stores the past self-interference channel estimates.
A radio-frequency (RF) transceiver front-end circuit includes an antenna, a power amplifier, a low-noise amplifier, a first switch unit and a second switch unit. The power amplifier is connected to a transmitting unit and the antenna to form a transmission path. The low-noise amplifier is connected to a receiving unit and the antenna to form a reception path. The transmission path and the reception path selectively do not include a λ/4 transmission line connected to the antenna. The RF transceiver front-end circuit has a receiving state and a transmitting state. In the receiving state, the first switch unit is controlled and causes the transmission path to have high impedance. In the transmitting state, the second switch unit is controlled and causes the reception path to have high impedance.
Example implementations relate to an antenna. In some examples, a system may comprise a radio, an antenna, and an enforcer. The antenna may be connected to the radio and the antenna may be non-functional until an enabling signal is received. The enforcer may modify the enabling signal in response to a determination whether a utilization of the antenna by the radio is permitted.
A protective lens cover for a camera and a flash of an electronic device includes a first lens portion for covering the camera of the electronic device and a second lens portion for covering the flash of the electronic device. The first lens portion has a top surface, a bottom surface positioned directly opposite the top surface, and a side surface continuously extending from the top surface to the bottom surface. At least a portion of the side surface of the first lens portion is coated with a light-blocking ink.
Radio frequency (RF) circuitry is configured to separately route RF transmit signals in different RF frequency bands through one or more non-linear elements, such as switches, in order to avoid intermodulation of the RF transmit signals. One or more filters may be arranged to provide different switching paths in RF front end circuitry to ensure that RF transmit signals are not routed together through a non-linear element, thereby improving the performance of the circuitry.
A method and a terminal device for executing a radio application are disclosed. The method for executing a radio application comprises the steps of: allowing a radio virtual machine (RVM) of a reconfigurable mobile device to reference a radio programming interface (RPI); and replacing at least one abstract processing element (APE) of the RVM with at least one elementary RVM according to an RVM hierarchical structure referenced by the RPI.
A device, system and method for decoding a product code generated by encoding input data by a plurality of first and second dimension error correction codes. For each of a plurality of first dimension codewords, the first dimension input data codeword may be decoded using a first dimension error correction code and the first dimension codeword may be erased if errors are detected in the decoded first dimension codeword. For each of a plurality of second dimension codewords, the second dimension codeword may be decoded using a second dimension erasure correction code to recover an erasure in the second dimension codeword that was erased in the first dimension decoding.
A transmitter is provided. The transmitter includes: a Low Density Parity Check (LDPC) encoder configured to encode outer-encoded bits to generate an LDPC codeword including LDPC information bits and parity bits; a puncturer configured to puncture some of the parity bits included in the LDPC codeword; and a mapper configured to map the LDPC codeword except the punctured parity bits to symbols for transmission to a receiver, wherein the puncturer calculates a number of parity bits to be punctured among the parity bits included in the LDPC codeword based on a number of the outer-encoded bits, a number of the LDPC information bits, and a minimum number of parity bits to be punctured among the parity bits included in the LDPC codeword.
Systems, methods, and apparatus are provided for iteratively decoding a codeword. Once a codeword is received, the codeword is processed to generate an incremental hard decision value and a log likelihood ratio amplitude value. These values are generated by processing the codeword using a soft output Viterbi algorithm. A faulty symbol in the codeword is identified. A complete hard decision value is generated using the incremental hard decision value. The LLR amplitude value and complete hard decision value corresponding to the identified faulty symbol are selectively provided to a decoder and the decoder uses these values to decode the codeword.
A bitstream converter for converting a 1-bit pulse density modulated (PDM) bitstream signal into an analog audio signal, the bitstream converter comprising: a processor configured to process the 1-bit PDM bitstream signal using a return to zero clock having a frequency higher than a sampling frequency of the 1-bit PDM bitstream signal to output a corresponding 1-bit return to zero signal, wherein the processor is configured to process the 1-bit PDM signal to ensure a portion of each bit of the 1-bit PDM bitstream signal is zero for a duration which is based on the frequency of the return to zero clock; and signal processing means configured to extract the analog audio signal from the 1-bit return to zero signal by filtering the 1-bit return to zero signal.
A differential successive approximation register (SAR) analog-to-digital converter (ADC) with wide input common-mode range adds one step to its conversion process. No additional circuitry is required for full rail-to-rail common mode voltage operation. In a first step the top-plate nodes vcp and vcn may be reset to a fixed voltage vcm. Then in a next step sampling may be performed while leaving vcp and vcn floating but shorted. Whereby a single node vx is formed, which provides for simple capacitive voltage division. Thereafter a standard sequential SAR bit-by-bit analog-to-digital conversion is performed. the voltage at node vx will follow vcmin during the entire sampling phase, with a limitation in rate of change only limited by the RC time constant of the shorting switch and the sampling capacitors. This will have much higher bandwidth than any active OTA-based tracking circuit.
Multi-step ADCs performs multi-step conversion by generating a residue for a subsequent stage to digitize. To generate a residue, a stage in the multi-step ADC would reconstruct the input signal to the stage using a feedforward digital to analog converter (DAC). Non-linearities in the DAC can directly affect the overall performance of the multi-step ADC. To reduce power consumption and complexity of analog circuit design, digital background calibration schemes are implemented to address the non-linearities. The non-linearities that the calibration schemes address can include reference, DAC, and quantization non-linearities.
A DA converter includes a first DA conversion section for obtaining an analog output signal in accordance with a digital input signal value, and a second DA conversion section for obtaining an analog gain control output signal in accordance with a digital gain control input signal value. In the DA converter, the gain control of the analog output signal generated by the first DA conversion section is performed on the basis of the gain control output signal generated by the second DA conversion section.
A device includes a physical medium attachment (PMA), a physical coding sublayer (PCS), a phase detector, and an oscillator. The PMA receives data at a first speed and overclocks the received data to a second speed, wherein the second speed is higher than the first speed. The PCS receives the data at the second speed. The phase detector receives another data from the PCS wherein the another data is based on the received data at the second speed or the phase detector is configured to receive the data at the second speed directly from the PMA. The phase detector adjusts a phase based on bit transitions. The oscillator is coupled to the phase detector and generates a reference clock signal wherein a phase of the reference clock is adjusted by the phase detector. The oscillator clocks the PMA based on the adjusted clock.
An integrated circuit includes an input terminal configured to receive an input signal, a reference voltage node configured to provide a control voltage, and a pass transistor comprising a first terminal coupled to a first node, a control terminal coupled to the reference voltage node, and a second terminal coupled to the input terminal. The control voltage has a control voltage level sufficient to allow a signal to pass from the second terminal to the first terminal. The pass transistor is configured to linearly transfer the input signal to the first node in response to a voltage level of the input signal being below a first voltage level and configured to transfer a voltage-limited version of the input signal to the first node in response to the voltage level being above the first voltage level. At most, a negligible DC current flows through the input terminal into the second terminal.
A switch control circuit includes a positive voltage bias node, a voltage-regulated positive supply rail coupled to the positive voltage bias node, a charge pump coupled to a charge pump supply node, and a current source positive supply rail coupled to the charge pump supply node and configured to supply the charge pump.
A circuit and method are provided for improving the accuracy of a quadrature clock. The method includes receiving a first phase, a second phase, a third phase, and a fourth phase of a first quadrature clock; outputting a first phase of a second quadrature clock in accordance with an equal sum of the first phase and the second phase of the first quadrature clock using a first summing network; outputting a second phase of the second quadrature clock in accordance with an equal sum of the second phase and the third phase of the first quadrature clock using a second summing network; outputting a third phase of the second quadrature clock in accordance with an equal sum of the third phase and the fourth phase of the first quadrature clock using a third summing network; and outputting a fourth phase of the second quadrature clock in accordance with an equal sum of the fourth phase and the first phase of the first quadrature clock using a fourth summing network.
Systems, methods, and devices are provided to efficiently share an antenna between multiple communication systems and allow for the communication systems to be simultaneously connected to the antenna with less attenuation and/or no fluctuation in signal strength. Communication circuitry may include an antenna that transmits and receives electromagnetic radiation. The communication circuitry may also include an antenna port that provides primary access to the antenna with a first attenuation via an antenna port input. Additionally, the communication circuitry may include a coupler attached to the antenna port. The coupler may provide secondary access to the antenna with a second attenuation.
A radio frequency front-end circuit includes a multiplexer including filters with different pass bands and including a first acoustic wave filter and a first terminal of each of the filters being connected in common, a second acoustic wave filter including a pass band within the pass band of the first acoustic wave filter, and a switch including a common terminal connected to a second terminal of the first acoustic wave filter and selective terminals including a selective terminal connected to the second acoustic wave filter. Each of an acoustic wave resonator of the first acoustic wave filter located closest to the switch and an acoustic wave resonator of the second acoustic wave filter located closest to the switch, is a serial arm resonator.
A bulk acoustic wave resonator includes a substrate including a cavity groove, a membrane layer disposed above the substrate and including a convex portion. And a lower electrode including a portion thereof disposed on the convex portion. The bulk acoustic wave resonator also includes a piezoelectric layer configured so that a portion of the piezoelectric layer is disposed above the convex portion, and an upper electrode disposed on the piezoelectric layer. A first space formed by the cavity groove and a second space formed by the convex portion form a cavity, the cavity groove is disposed below an active region, and the convex portion comprises an inclined surface disposed outside of the cavity groove.
Bulk Acoustic Wave (BAW) resonators with a Border (BO) ring and an inner ring are provided. One BAW resonator includes a bottom electrode, a piezoelectric layer over the bottom electrode, and a top electrode over the piezoelectric layer in which an active region is formed where the top electrode and the bottom electrode overlap. The top electrode includes a BO ring extending about a periphery of the active region and an inner ring inside of and spaced apart from the BO ring. The BO ring is a mass loading of a first portion of the top electrode and the inner ring is a mass unloading of a second portion of the top electrode. Various methods include fabricating a BAW resonator with a top electrode including a mass loading BO ring and a mass unloading inner ring spaced apart from the mass loading BO ring.
Methods and apparatuses for tuning source impedance for at least a portion of a receive path in a radio frequency front-end. An exemplary circuit generally includes a first tunable resonant circuit having an output coupled to an input of the at least the portion of the receive path and a second tunable resonant circuit having an input coupled to the output of the first tunable resonant circuit and to the input of the at least the portion of the receive path. The circuit also includes a first control input coupled to the first tunable resonant circuit and configured to adjust an impedance of the first tunable resonant circuit based on a frequency response of an output of the at least the portion of the receive path, and a second control input coupled to the second tunable resonant circuit and configured to adjust an admittance of the second tunable resonant circuit.
Various examples are provided for tunable radio frequency (RF) filtering. In one example, a RF multiband filter includes a Lyot filter including a tunable birefringence loop including a circulator and a polarization controller (PC) and a phase modulator (PM). The Lyot filter can generate an optical comb based at least in part upon a received optical signal and a polarization rotation angle of the polarization controller. The phase modulator (PM) can generate a modulated tap signal by modulating the optical comb by a RF input signal.
A new method for amplifying signals having higher bandwidth, lower T.H.D., higher efficiency, smaller circuit size and lower costs in design, has been developed. A clipped signal is amplified to smaller pieces and each smaller part is amplified. Adding clipped amplified signals to each other, the main amplified signal is generated.
Support plate adapted for fitting into a photovoltaic panel and allowing the fixing and the integration of this panel onto a building roof, said plate comprising leaktight vertical overlap means, leaktight leteral fitting means adapted for cooperating with a neighboring plate, protruding studs for positioning the plate which are raised, characterized in that the plate comprises a central portion forming a hood which is deliminated by a front face designed to be arranged opposite the photovoltaic panel and a rear face, said hood comprising an aperture adapted for allowing the recovery of air interposed between the photovoltaic panel and the front face of the hood.
An electric motor apparatus may include a rotor and a stator. The apparatus may include a main field motor stage having a set of stator armature windings positioned on the stator and a set of main field windings positioned on the rotor, where the set of stator armature windings is configured to receive a main multiphase power signal from an alternating current power bus having a first current that causes a first rotating magnetic flux that rotates relative to the stator, where the set of main field windings is configured to receive a secondary multiphase power signal having a second current that causes a second rotating magnetic flux that rotates relative to the rotor, and where a combination of the first rotating magnetic flux and the second rotating magnetic flux causes the rotor to turn at a predetermined reference frequency.
Methods and apparatus providing a smooth transition from a pulse width modulation mode to a linear mode to drive a voice coil motor are disclosed. An example apparatus includes an H-bridge; a pulse generator to generate a pulse when the voice coil motor driver transitions from pulse width modulation mode to linear mode; a first boost circuit to, when the pulse is generated, increase a first current being applied to a first gate of a first transistor in the H-bridge, the increase in the first current enabling the first transistor; and a second boost circuit to, when the pulse is generated, provide an additional path to ground from a node coupled to a second gate of a second transistor of the H bridge, the path to ground corresponding to a voltage drop that disables the second transistor.
A motor control unit controls a driving current that flows through a coil of a motor to be driven, by controlling a PWM signal supplied to an H bridge circuit constituted by FETs. A current value generation unit detects a driving current based on a voltage that occurs across a current detection resistor, and corrects a detection value by using a first or second correction value. The current value generation unit, if the driving current is detected in the H period of the PWM signal, corrects the detection value by using the first correction value, and if the driving current is detected in the L period of the PWM signal, corrects the detection value by using the second correction value that has a polarity different from a polarity of the first correction value.
Embodiments of a method, controller and system include an electric generating system with interleaved direct current DC-DC converter are provided. The embodiments include a controller, a permanent magnet generator (PMG), wherein the PMG provides a 6-phase PMG, and a rectification stage coupled to the PMG. The embodiments also include a boost converter stage coupled to the rectification stage, wherein the boost converter stage comprises four phases, a DC link capacitor coupled to the boost converter stage, and an output filtering stage coupled to the DC link capacitor.
An electric machine coupled to rotating machinery includes a rotor and a stator, and the method of control of an electric machine and an electric machine control system. The method includes sensing one or more parameters indicative of one or more resonance conditions of the rotating machinery, and comparing the sensed parameter to a predetermined threshold to determine whether the rotating machinery is operating at the resonance condition. Where the rotating machinery is determined to be operating at the resonance condition, adjusting a magnetic field of one or both of the rotor and the stator to provide a predetermined torque to the rotating machine, to modulate the stiffness of the rotational machinery, and thereby move the resonance condition away from the current rotating machinery conditions.
The present disclosure relates to an apparatus for controlling multiple inverters and an inverter system including the same. The apparatus according to the present disclosure determines a motor having the smallest operation time among motors which are not being operated as a main motor to thereby transmit a running reference and a frequency reference to the corresponding main motor, if a speed of a main motor which is being operated is above a speed set by a user and a feedback is below a predetermined level.
A rectifier device is described herein. In accordance with one embodiment, the rectifier device includes a semiconductor body doped with dopants of a first doping type and one or more well regions arranged in the semiconductor body and doped with dopants of a second doping type. Thereby, the one or more well regions and the surrounding semiconductor body form a pn-junction. The rectifier device further includes an anode terminal and a cathode terminal connected by a load current path of a first MOS transistor and a diode, which is parallel to the load current path. An alternating input voltage is applied between the anode terminal and the cathode terminal during operation of the rectifier device. The rectifier device includes a control circuit that is configured to switch on the first MOS transistor for an on-time period, during which the diode is forward biased, wherein the first MOS transistor and the diode are integrated in the semiconductor body and the control circuit is at least partly arranged in the one or more well regions. Further, the rectifier device includes a switching circuit that is configured to electrically connect a first well region of the one or more well regions with the anode terminal, as long as the alternating input voltage is above a threshold value, and, to pull the voltage of first well region towards the alternating input voltage, as long as the alternating input voltage is at or below the threshold value.
A voltage converter control apparatus controls repetitive switching operations of a voltage converter, for conversion between a terminal voltage of a battery as an input-side voltage and a terminal voltage of a power inverter as an output-side voltage, by determining a command value of duty ratio of the switching in accordance with a command value of the output-side voltage. The voltage converter control apparatus sets a normal duty ratio range defining limit values of the duty ratio for normal operation of the voltage converter, with the limit values being determined based upon information including the command value of the output-side voltage.
A power conversion system includes a feedback controller circuit connected between the output of a boost converter and a duty cycle control input of the boost converter. The feedback controller circuit comprises: a first summing node which generates an error signal indicative of a difference between a voltage of the output of the boost converter and a reference voltage, a compensator circuit receiving the error signal and applying a gain to the error signal to generate an amplified error signal, and a scaling circuit for scaling the amplified error signal to generate a scaled signal, which is applied to a duty cycle control input of the boost converter to alter the duty cycle and/or pulse frequency of the boost converter. The feedback controller circuit provides a frequency-dependent impedance transformation looking into the boost converter from the source such that instability due to line impedance is reduced.
An oscillatory actuator has: a fixed body that has a planar part and a flat coil disposed on the planar part; and a movable body that has a magnet facing the coil and oscillates in a reciprocating manner in one direction relative to the fixed body above the planar part via cooperation between the coil and the magnet. The fixed body has a pair of linear bearings that are respectively disposed along both side surfaces extending in said one direction of the movable body and are equipped with balls capable of rolling and coming into contact with the respective side surfaces. The movable body is supported via the balls of the linear bearings so as to be able to oscillate in said one direction.
A stator for a high efficiency motor and a manufacturing method of a stator for a high efficiency motor are disclosed. The method includes: preparing filling powder by coating a surface of soft magnetic powder with an insulating layer; providing a stator core partitioned into a center hole and inner spaces, the stator core including a yoke portion and a plurality of teeth; coiling coils around the plurality of teeth located in the inner spaces, respectively; and filling the inner spaces with a mixture of the filling powder and an adhesive, and curing the mixture of the filling powder and the adhesive.
The electric machine comprises a rotor, a stator and a support structure. The stator comprises a stator core and a stator frame. The stator frame has axial (X-X) ends and longitudinal sides. The rotor is supported with bearings on the support structure. An end support structure of cast iron is provided at each end of the stator frame. The end support structure is formed of a longitudinal middle portion and two upwards directed end portions. The end support structure extends in a traverse direction between outer edges of the axial (X-X) end of the stator frame. The end support structure is attached with compression joints to the support structure and to the axial (X-X) end of the stator frame.
This disclosure discloses a rotating electric machine including a rotor and a stator. The rotating electric machine includes a stator core including a teeth part, and an air core coil. The air core coil is fitted to the teeth part. The air core coil includes curved end surfaces configured to approximately define a part of cylindrical shape at inner radial side and outer radial side. The air core coil includes approximately flat end surfaces at both circumferential sides and both axial sides.
In a wireless power transfer system, a resonant circuit is formed on the secondary coil side, phase information of a resonant current flowing in the resonant circuit is detected, and, based on this phase information, a driving frequency is determined so that the current phase of a driving current flowing in a primary coil slightly delays from the voltage phase, thereby driving the primary coil. A Q value determined based on a leakage inductance of the secondary coil, a capacitance of a resonant capacitor, and an equivalent load resistance is set to a value greater than or equal to a value determined by Q=2/k2 (k is a coupling coefficient).
A wireless power receiver that receives a power signal from a wireless power transmitter includes: a receiving antenna including a receiving coil for receiving the power signal; a rectifying circuit configured to rectify an alternating current flowing through the receiving antenna; a smoothing capacitor configured to smooth an output of the rectifying circuit; an overvoltage detecting circuit configured to compare a rectified voltage generated in the smoothing capacitor with an overvoltage threshold; a modulator configured to change a parallel resonance frequency of the receiving antenna; and a discharging circuit configured to be switched between an enable state and a disable state and configured to enter the enable state during a communication period by the modulator to discharge the smoothing capacitor.
According to one embodiment, a wireless power transmission system includes: a power transmission device and a power reception device. The power transmission device includes an AC power generation circuit; first circuits connected to the AC power generation circuit; and power transmission resonators. The power reception device includes: power reception resonators, second circuits each connected to different one of the plurality of power reception resonators and a rectifier circuit. An absolute value of an open-circuit output reverse voltage gain in an F matrix of each of the plurality of first circuits is less than 1, and an absolute value of a short-circuit output reverse current gain in an F matrix of each of the plurality of second circuits is less than 1.
The present disclosure relates to a wireless power transmitter for performing communication with a wireless power receiver using a plurality of slots, and the wireless power transmitter may include a power conversion unit configured to transmit a wireless power signal to the wireless power receiver, and a power transmission control unit configured to perform communication with the wireless power receiver using the wireless power signal, wherein the power transmission control unit performs steps including receiving control information from the wireless power receiver within any one of the plurality of slots, transmitting an ACK signal to the wireless power receiver in response to the control information, and allocating the any one slot to the wireless power receiver to perform communication with the wireless power receiver using the any one slot when the ACK signal is received.
Exemplary embodiments of the present disclosure are related to a wireless power resonator and method that includes a wireless power transmit element. The wireless power transmit element may include a substantially planar transmit antenna configured to generate a magnetic field and formed from a conductive trace including a plurality of distributed inductive elements along the conductive trace. The transmit element may further include a filter formed from selected ones of the plurality of distributed inductive elements of the planar transmit antenna and configured to generate at least one frequency response.
The present invention relates to an energy harvesting circuit for harvesting energy from at least one energy source. The circuit comprises: an oscillating circuit comprising an inductor and a first capacitor for temporarily storing charges from the energy source and connected in series with the inductor, the inductor being connected to a first oscillating circuit node, while the first capacitor being connected to a second oscillating circuit node; a first switch connected between the first oscillating circuit node and the energy source for selectively connecting and disconnecting the energy source to or from the oscillating circuit; a second switch connected between ground and the first oscillating circuit node for generating a negative voltage across the first capacitor during oscillations of the oscillating circuit for collecting charges from the at least one energy source when the voltage across the first capacitor is negative; a voltage regulating element for controlling voltage across the energy source; a control circuit for controlling opening and closing of the first and second switches; and a clock signal generator for providing a clock signal to the control circuit to allow opening and closing the first and second switches in a timely coordinated manner.
Disclosed is a wireless charging system of using multi-frequency including at least one transmitter and at least one receiver which is wirelessly charged by the at least one transmitter, wherein the at least one transmitter includes a signal generator configured to generate a power signal of each of a plurality of frequency bands; a plurality of matching units connected to the signal generator matching and outputting the power signal of each of the plurality of frequency bands; and at least one antenna connected to the plurality of matching units transmitting the power signal of each of the plurality of frequency bands to each of at least one receiver, and wherein the at least one receiver includes at least one antenna receiving a power signal of each of a plurality of frequency bands from each of at least one transmitter; a plurality of matching units connected to the at least one antenna matching and outputting the power signal of each of the plurality of frequency bands; and a plurality of rectifiers connected to the plurality of matching units rectifying AC power applied to the power signal of each of the plurality of frequency bands to DC power.
A system includes a battery and a power management unit connected with the battery. The power management unit controls power to the battery. A spare power unit can connect with the power management unit and the battery. The power management unit stores excess charge to the spare power unit and to divert stored charge to the battery when the battery is charged less than a determined percentage.
A charging and discharging control device is configured to control switching operations of a plurality of switching devices in a first control mode such that only a part of the plurality of battery groups are connected to the electrical load when a measured temperature of the battery pack has not reached a predetermined determination temperature when discharging of the battery pack is performed, and controls the switching operations of the plurality of switching devices in a second control mode such that all of the plurality of battery groups are connected to the electrical load when the measured temperature of the battery pack has reached the predetermined determination temperature when discharging of the battery pack is performed.
In a direct load control system supporting frequency control of an electrical grid, at each electrical load of an aggregation of loads, a load status report is generated comprising an urgency value and a power level. At an aggregation dispatch controller, a dispatch signal is generated based on the generated load status reports and information indicative of electrical frequency. At each electrical load of the aggregation, the load is operated at the reported power level if the reported urgency value satisfies the dispatch signal and is not operated at the reported power level if the reported urgency value does not satisfy the dispatch signal.
A method for ranking network assets based on downstream events may include: receiving communications from one or more sensors in a power distribution network, the communications indicating the occurrence of a network event; calculating a probability of a network asset causing a problem indicated by the event for each network asset in an affected area of the network; calculating a spread probability of the network asset causing the problem for each network asset in the affected area of the network; based on the probability and the spread probability, calculating a probability of the network asset malfunctioning for each network asset in the affected area of the network; comparing the probability of the network asset malfunctioning to a threshold value; based on the comparison, determining a network asset having a highest probability of malfunctioning; and controlling one of more other network assets to mitigate the problem.
A cable has a corrugated armor exterior surface, and a split bushing defines an interior surface which conforms to the corrugated exterior surface. The bushing is split radially in one place to form a gap which may be opened to allow the bushing to open, or the bushing is split radially at two or more places to form two or more parts, and is fitted about the corrugated exterior surface. The bushing defines first and second external chamfer surfaces. A connector includes a body having external threads and a chamfer which urges against the first bushing chamfer. A nut has internal threads which engage the external threads of the body, and a chamfer which urges against the second bushing chamfer. As the nut is tightened onto the body, wedge action on the first and second bushing chamfers compresses the bushing around the corrugated exterior surface to secure the connector to the cable.
The optical mode of a photonic device is coupled between a first region made of a semiconducting material, and a second region made of a dielectric material. Photons are generated within the first region, while the optical mode is predominantly stored within the second region. The thickness of the first region and its width are controlled to determine its effective refractive index, enabling control of the optical mode.
A control apparatus for driving a laser diode comprises an output connection for connecting the laser diode, a regulation device for generating an output signal, a detector device which is designed to determine a regulation variable when the regulation device provides the output signal and the laser diode is connected to the output connection. The control apparatus furthermore comprises a computer device for providing a control signal for the regulation device, wherein the computer device provides the control signal independently of the regulation variable. The regulation device is designed in such a way that it generates a level for the output signal depending on the control signal and the determined regulation variable.
An electrical connector assembly method, including the steps of: step 1: providing a terminal having a soldering portion; step 2: heating the soldering portion to a melting temperature of a solder; step 3: providing the solder, and press-fitting the solder to the soldering portion by a jig, so that the solder is fused and fixed to the soldering portion; and step 4: inserting the terminal fixed with the solder into an insulating body. Because only the soldering portion of the terminal is heated, less thermal energy is needed, thereby saving energy and reducing the production cost of the electrical connector. Moreover, the insulating body does not need to be heated, thus preventing the insulating body from being warped and deformed due to heat.
Connector adapters that may have a MagSafe connector receptacle and a Universal Serial Bus Type-C connector insert. This may allow MagSafe chargers to be used to charge devices having Universal Serial Bus Type-C connector receptacles. This also may provide the breakaway characteristic of a MagSafe connector system for a device that does not include a MagSafe connector receptacle. Other adapters may have other types of magnetic connector receptacles and connector inserts.
The present disclosure provides a load-bearing type circuit connecting device applicable to ferrule structure and an artificial Christmas tree with the device. A power source communicating device is provided with a first inserting connector and a second inserting connector, which are respectively assembled in an inner cavity of a first tree section and an inner cavity of a second tree section, wherein the first tree section and the second tree section are adjacent and are in inserting connection, and the first inserting connector and the second inserting connector are respectively provided with three or more electrical interfaces; and a first connecting end face of the first inserting connector is protruded from the inner cavity of the first tree section, and a second connecting end face of the second inserting connector is protruded from the inner cavity of the second tree section.
The present invention relates to a detachable connection port and an electronic device having the same. The detachable connection port is detachably assembled at an electronic device, which includes a board-to-board connector. The detachable connector includes a sub circuit board and a socket connector. The sub circuit board includes a golden finger. The socket connector is fixed at and electrically connected to the sub circuit board, and includes an installation portion. The socket connector is installed at the electronic device through the installation portion, and is electrically connected to the board-to-board connector through the golden finger. Thus, the detachable connection port achieves an advantage of easy replacement, further reducing repair costs and standby time for a user.
An electrical terminal device adapted to mount to a structure, and including a electrically non-conductive substructure, an electrically non-conductive cover, a heat resistant shroud, and an electric terminal. The substructure is in contact with the structure. The cover is engaged to the substructure. The substructure and the cover define a chamber, and the substructure defines, at least in-part, a sealed passage in communication with the chamber. The heat resistant shroud substantially covers the cover. The cover is substantially located between the shroud and the substructure. The electric terminal is located in the chamber and is attached to the substructure.
An antenna module includes a connection member including at least one wiring layer and at least one insulating layer; an integrated circuit (IC) package disposed on a first surface of the connection member; and an antenna package including a plurality of antenna members and a plurality of feed vias, and disposed on a second surface of the connection member, wherein the IC package includes: an IC having an active surface electrically connected to at least one wiring layer and an inactive surface opposing the active surface, and generating the RF signal; a heat sink member disposed on the inactive surface of the IC; and an encapsulant encapsulating at least portions of the IC and the heat sink member.
A dielectric resonator antenna (DRA) array having an array feeding network and a parasitic patch array made up of individual antenna elements is provided with a dielectric lens made from a single piece of dielectric material in the form of a generally planar sheet. The sheet may be substantially coextensive with the DRA array so as to cover all of the antenna elements. The single piece of dielectric material has a plurality of dielectric portions defined by a plurality of holes through the sheet. Each dielectric portion may be positioned over one of the antenna elements. Adjacent dielectric portions are connected to each other along connecting edge portions thereof, and a single hole is defined through the sheet between connecting edge portions of a group of mutually adjacent dielectric portions.
A battery-pack case includes a container that accommodates a battery pack and has an opening in the top surface thereof, a lid that closes the opening, and a plurality of heater units provided inside the container. The heater units include a first heater unit provided at the bottom of the container and a second heater unit provided on a side wall of the container. A first heater and a second heater that constitute the first heater unit are connected in series, as are third through sixth heaters that constitute the second heater unit.
The present invention provides a battery cell of a plate shape, including: an electrode assembly in which a separator is interposed between a positive electrode and a negative electrode, wherein the electrode assembly may be mounted on a receiving part; and sealing parts formed by heat fusion at an external side of the receiving part, wherein lateral sealing parts adjacent to one of the sealing parts at which an electrode terminal is positioned may closely contact an outer surface of the receiving part while being bent toward the receiving part of a battery case, and a phase change material (PCM) that is phase-changed in response to a thermal change may be added to surplus surfaces of the lateral sealing parts or to surplus spaces between the receiving parts and the bent lateral sealing parts.
A fuel cell assembly includes a fuel cell stack including a plurality of fuel cells, an incoming oxidizing gas flow path configured to deliver an oxidizing gas to the plurality of fuel cells, and a chromium-getter material located in the incoming oxidizing flow path. A fuel cell includes an electrolyte, a cathode electrode on a first side of the electrolyte, an anode electrode on a second side of the electrolyte, and a chromium-getter material on the cathode electrode.
A fuel cell includes power generation cells and an end cell. Each power generation cell has in it a gas passage, through which power generation gas passes. The fuel cell includes an introducing conduit, which distributes and introduces the power generation gas into the gas passages, and a discharging conduit, which merges flows of the power generation gas after passing through the gas passages and discharges the merged flow. The end cell has in it a bypass passage, which connects the introducing conduit and the discharging conduit to each other. The bypass passage is composed of parallel channels, each of which is independently connected to the introducing conduit. The parallel channels include lower parallel channels and upper parallel channels. The pressure loss in each of the lower parallel channels is smaller than the pressure loss in each of the upper parallel channels.
Methods, systems, and devices for powering downhole tools with an electrochemical device are provided. A downhole power system includes an electrochemical device having an anode and a cathode. The power system includes a downhole tool electrically communicating with the electrochemical device to provide electrical power to the downhole tool. The electrochemical device is activated when immersed in a downhole fluid and inactive when not immersed in the downhole fluid, the downhole fluid functioning as an electrolyte.
An anode composition, an alkali battery, a method of making a battery anode, and a method of making a battery, wherein the anode comprises a zinc or zinc alloy and a surfactant of formula (I): wherein R1, R2, and R3 are each individually selected from hydrogen, C1-C12 alkyl, and aryl; y is null or 1, x is an integer from 2 to 30, n is an integer from 2 to 6, and M is hydrogen or an alkali metal; provided that: when two of R1, R2, and R3 are hydrogen, at least one of R1, R2, and R3 is a C4-C12 alkyl or aryl; or, when each of R1, R2, and R3 are alkyl or aryl, at least one of R1, R2, and R3 comprises a C2-C12 alkyl or aryl; or when R1 is hydrogen, then (a) each of R2 and R3 comprises a C2-C12 alkyl or aryl or (b) at least one of R2 and R3 comprises a C3-C12 alkyl or aryl.
According to one embodiment, there is provided an active material. The active material includes a composite oxide having a monoclinic crystal structure and represented by a general formula of LiwNa2−xM1yTi6-zM2zO13+δ. In the general formula, M1 is at least one metallic element selected from the group consisting of Mg, Sr, Ca, Ba, Cs and K. M2 is at least one metallic element selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Fe, Co, Mn and Al. The subscript w is within a range of 0≤w≤6. The subscript x is within a range of 0≤x<2. The subscript y is within a range of 0≤y<2. The subscript z is within a range of 0
A method of preparing a hard carbon-based electrode active material having high specific surface area by carbonization process control, comprises charging polyurethane into a high temperature furnace, supplying oxygen gas to the high temperature furnace and oxidizing the polyurethane under an oxygen atmosphere, supplying a nitrogen gas to the high temperature furnace and heating to carbonize a stabilized polyurethane under a nitrogen atmosphere, thereby producing a hard carbon, heating the hard carbon under a nitrogen atmosphere and supplying steam to activate the hard carbon under a steam atmosphere, thereby producing an active carbon, supplying hydrogen and reducing the active carbon under a hydrogen atmosphere, and cooling the active carbon under a nitrogen atmosphere.
According to one embodiment, a method includes forming a nickel oxide/hydroxide active film onto a substrate from a solution including a nickelous salt and an electrolyte, where the nickel oxide/hydroxide active film has a physical characteristic of maintaining greater than about 80% charge over greater than 500 charge/discharge cycles, and wherein the nickel oxide/hydroxide active film has a physical characteristic of storing electrons at greater than about 0.5 electron per nickel atom.
An embodiment is directed to a hybrid contact plate arrangement in a battery module that includes a plurality of contact plates configured to be arranged on a given side of a set of battery cells in the battery module, at least one insulation layer configured to provide insulation between each of the plurality of contact plates, wherein the set of battery cells includes a plurality of groups of battery cells, and wherein the plurality of contact plates each include a set of bonding connectors, the sets of bonding connectors being configured to connect to the positive and negative terminals of the plurality of groups of battery cells so as to connect battery cells in each of the plurality of groups of battery cells in parallel with each other, and to connect the plurality of groups of battery cells in series with each other.
In a battery case for a vehicle that houses a battery, at a vertical direction intermediate portion of one of an inner panel or an outer panel, there is formed a bulging portion which bulges out toward another of the inner panel or the outer panel and is joined to the other of the inner panel or the outer panel by spot welding, closed cross-section portions are formed at a side wall at both an upper side and a lower side of the bulging portion, respectively, and weld points of the spot welding that join the inner panel and the outer panel are disposed at positions that do not overlap with supporting members as seen from a direction in which the inner panel and the outer panel face one another.
A power interface ensemble includes an article-carrying tool exemplified by a bag or similar other carrying case having an interface opening formed in an exterior surface plane thereof. A power source or battery is disposed within the bag or carrying case, and a particularly configured power interface module is adapted to be electrically coupled to the battery or power source. The power interface module may include an interface input port for connecting to an external power source and an interface output port for connecting to an electronic device. The power interface module is positioned at the interface opening of the article-carrying tool or bag such that the input port and the output port are accessible from an exterior of the bag. The power interface module is particularly contoured externally for protecting the input and output ports and is particularly contoured internally for directing electrical connectivity to the power source.
A secondary battery includes: a case having an internal space; an electrode assembly inserted in the case and including a first electrode plate, a second electrode plate, and a separator between the first electrode plate and the second electrode plate; a cap plate sealing the case, electrically connected to the first electrode plate of the electrode assembly, and including a safety vent on a region of the cap plate; an upper insulation member on the cap plate; a sub terminal plate on the upper insulation member and electrically connected to the safety vent through a connector part extending at an end of the sub terminal plate; and a terminal plate making contact with and coupled to a top portion of the upper insulation member and coupled to the sub terminal plate.
A reflective liquid crystal display device (30) including a reflection electrode (31), a liquid crystal layer (32), and a counter electrode (33) is formed above an insulating layer (25) in a first region (R) of a TFT substrate (20). An organic EL display device (40) including a first electrode (41), an organic layer (43), and a second electrode (44) is formed on the insulating layer (25) of the TFT substrate (20) in a second region (T). A coating layer (45) is formed at least on a surface of the organic EL display device (40) so as to wrap the second electrode (44) and the organic layer (43) of the organic EL display device (40). A part of the coating layer (45) is in contact with the insulating layer (25). As a result, a complex display apparatus capable of preventing the organic layer from deteriorating and excellent in reliability can be obtained.
A display device includes: a display panel having a bending area; and a protection film on a rear side of the display panel. The protection film includes a first protection film and a second protection film on respective sides of the bending area and separated from each other, and the first protection film and the second protection film each have a slanted side adjacent to the bending area.
According to the present disclosure, an organic optoelectronic component provides with a first electrode, an organic functional layer structure above the first electrode, a second electrode above the organic functional layer structure, at least one contact section for electrically contacting the organic optoelectronic component, and an electrically conductive elastomer connector which is arranged above the contact section and is electrically connected to the contact section. The contact section is electrically connected to one of the electrodes.
Provided is an electrochemical luminescent cell 10 having a luminescent layer 12 and electrodes 13, 14 provided on each surface of the luminescent layer 12. The luminescent layer 12 comprises an organic polymeric luminescent material and a combination of at least two organic salts. In particular, the luminescent layer preferably comprises a combination of at least two types of ionic liquids represented by formula (1) (wherein R1, R2, R3 and R4 each represent an optionally-substituted alkyl group, alkoxy alkyl group, trialkylsilylalkyl group, alkenyl group, alkynyl group, aryl group or heterocylic group. R1, R2, R3 and R4 may be the same or different. M represents N or P. X− represents an anion.)
Printed poly(ethylene oxide) (PEO) organometallic halide Perovskite (Pero) optoelectronic devices, including light emitting diodes (LEDs) fabricated on both rigid indium tin oxide (ITO)/glass and flexible carbon nanotube (CNTs)/polymer substrates using a composite thin film of PEO and Br-Pero as the light-emitting layer. Method of manufacturing Printed poly(ethylene oxide) (PEO) organometallic halide Perovskite (Pero) optoelectronic devices performed in an environment at a temperature of about 25° C. and a relative humidity between about 70% and 80%.
An organic electroluminescence device includes an anode, an emitting layer, and a cathode, the emitting layer including a delayed-fluorescent first compound represented by a formula (1), and a fluorescent second compound. In the formula (1), Ar1 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms and the like, and ArEWG is a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms and including one or more nitrogen atom in the ring, or an aryl group having 6 to 30 ring carbon atoms and substituted by one or more cyano group, at least one of Ar1 and ArX being at least one group selected from the group consisting of groups represented by a formula (1a) and the like.
A method for manufacturing resistive random access memories, each resistive random access memory including first and second electrodes separated by a layer of active material, the method including producing connector elements with a step Cp along a first direction, each connector element having a width Cb along the first direction; producing a plurality of first electrodes with a step Ep along the first direction, each first electrode having a first end surface and a second end surface, the second end surface having a width Eb along the first direction and an area greater than the area of the first end surface; wherein: 0
Articles including a fixing layer and a free layer including a layer including an FePd alloy. The free layer may include a composite layer including a perpendicular synthetic antiferromagnetic (p-SAF) structure. Techniques for forming and using articles including FePd alloy layers or p-SAF structures. Example articles and techniques may be usable for storage and logic devices.
Embodiments are directed to a superconducting microwave circuit. The circuit includes a substrate and two electrodes. The latter form an electrode pair dimensioned so as to support an electromagnetic field, which allows the circuit to be operated in the microwave domain. The substrate exhibits a raised portion, which includes a top surface and two lateral surfaces. The top surface connects the two lateral surfaces, which show respective undercuts (on the lateral sides of the raised portions). Each of the electrodes includes a structure that includes a potentially superconducting material. Two protruding structures are accordingly formed, which are shaped complementarily to the respective undercuts. This way, the shaped structure of each of the electrodes protrudes toward the other one of the electrodes of the pair.
A light-emitting device package according to an embodiment provides a light-emitting device including a light-emitting structure having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a package body; first and second lead frames disposed in the package body and disposed to be electrically isolated from each other; a first solder portion of a solid state disposed between the first lead frame and the first conductive semiconductor layer, the first solder portion having a uniform area and an even thickness; and a second solder portion of a solid state disposed between the second lead frame and the second conductive semiconductor layer, the second solder portion having a uniform area and an even thickness.
A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer. Electronic devices such as LEDs can be manufactured from such structures. Because the substrate can act as both a reflector and a heat sink, transfer to other substrates, and use of external reflectors and heat sinks, is not required, greatly reducing costs. Large area devices such as light emitting strips or sheets may be fabricated using this technology.
A semiconductor optical device has a multilayer structure 30 including a first compound semiconductor layer 31, an active layer 33, and a second compound semiconductor layer 32. A second electrode 42 is formed on the second compound semiconductor layer 32 through a contact layer 34. The contact layer 34 has a thickness of four or less atomic layers. When an interface between the contact layer 34 and the second compound semiconductor layer 32 is an xy-plane, a lattice constant along an x-axis of crystals constituting an interface layer 32A which is a part of the second compound semiconductor layer in contact with the contact layer 34 is x2, a lattice constant along a z-axis is z2, a length along an x-axis in one unit of crystals constituting the contact layer 34 is xc′, and a length along the z-axis is zc′, (zc′/xc′)>(z2/x2) is satisfied.
Novel materials, material deposition methods, and devices used to generate electrical power from thermal radiators based on thermophotovoltatic (TPV) operating principles using group IV-VI alloys and materials are disclosed. A semiconductor structure comprising (N) stacked junctions, each junction formed of a IV-VI semiconductor alloy and each of said N junctions having a bandgap, where N is an integer and N>1 is disclosed. The semiconductor structure is configured to capture electromagnetic radiation having wavelengths from about 1 μm to about 7 μm. TPV devices comprising the novel semiconductor structure and methods of making the novel structures and devices are also disclosed.
A miniaturized transistor with less variation and highly stable electrical characteristics is provided. Further, high performance and high reliability of a semiconductor device including the transistor are achieved. A semiconductor and a conductor are formed over a substrate, a sacrificial layer is formed over the conductor, and an insulator is formed to cover the sacrificial layer. After that, a top surface of the insulator is removed to expose a top surface of the sacrificial layer. The sacrificial layer and a region of the conductor overlapping with the sacrificial layer are removed, whereby a source region, a drain region, and an opening are formed. Next, a gate insulator and a gate electrode are formed in the opening.
The present invention provides a method of manufacturing a semiconductor device to improve the manufacturing yield of the semiconductor device. The manufacturing method includes the steps of: forming a groove extending in a first direction (y direction) across a first power transistor formation region and a second power transistor formation region, in a back surface of a semiconductor wafer; filling the groove with a conductor film by forming the conductor film on the back surface in which the groove is formed; and exposing the back surface of the semiconductor wafer by removing a portion of the conductor film.
A method for forming a salicide includes epitaxially growing source/drain (S/D) regions on a semiconductor fin wherein the S/D regions include (111) facets in a diamond shape and the S/D regions on adjacent fins have separated diamond shapes. A metal is deposited on the (111) facets. A thermally stabilizing anneal process is performed to anneal the metal on the S/D regions to form a silicide on the (111) facets. A dielectric layer is formed over the S/D regions. The dielectric layer is opened up to expose the silicide and to form contact holes. Contacts to the silicide are formed in the contact holes.
A switching element may include a SiC substrate including an off-angle; a trench provided in an upper surface of the SiC substrate and extending along an off-direction of the SiC substrate in a plan view of the upper surface; a gate insulating film; and a gate electrode. The SiC substrate may include a source region of n-type; a contact region of p-type; a body region of p-type being in contact with the gate insulating film below the source region; a drift region of n-type being in contact with the gate insulating film below the body region; and low lifetime regions located in a range between the drift region and at least one of the source region and the contact region. The low lifetime regions may be arranged along the off-direction with intervals, and at least a part of the body region may be provided in the intervals.
Techniques are disclosed for forming self-aligned transistor structures including two-dimensional electron gas (2DEG) source/drain tip portions or tips. In some cases, the 2DEG source/drain tips utilize polarization doping to enable ultra-short transistor channel lengths of less than 20 nm, for example, and create highly conductive, thin source/drain tip portions in transistor devices. In some instances, the 2DEG source/drain tips can be formed by self-aligned regrowth of a polarization layer over a base III-V compound layer and on either side of a dummy gate, in locations to be substantially covered by spacers. In some cases, the III-V base layer may include gallium nitride (GaN) or indium gallium nitride (InGaN), for example, and the polarization layer may include aluminum indium nitride (AlInN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or aluminum indium gallium nitride (AlInGaN), for example.
A semiconductor device of the present invention includes a semiconductor layer of a first conductivity type having a cell portion and an outer peripheral portion disposed around the cell portion, formed with a gate trench at a surface side of the cell portion, and a gate electrode buried in the gate trench via a gate insulating film, forming a channel at a portion lateral to the gate trench at ON-time, the outer peripheral portion has a semiconductor surface disposed at a depth position equal to or deeper than a depth of the gate trench, and the semiconductor device further includes a voltage resistant structure having a semiconductor region of a second conductivity type formed in the semiconductor surface of the outer peripheral portion.
A display apparatus including a first conductive layer; a first insulating layer including a first opening exposing a first upper surface of the first conductive layer and covering at least a part of an upper edge of the first conductive layer, wherein the first upper surface of the first conductive layer includes a center portion of an upper surface of the first conductive layer; a second conductive layer on a part of the first upper surface of the first conductive layer and on the first insulating layer; and a second insulating layer including a second opening exposing a second upper surface of the second conductive layer and covering a part of an upper edge of the second conductive layer, wherein the second upper surface of the second conductive layer includes a center portion of the upper surface of the second conductive layer and the second opening has an area that is less than that of the first opening.
The present disclosure relates to an organic light emitting diode (OLED) display panel, an OLED display and an OLED unit. The OLED display panel includes: a scan line, extending along a first direction; a data line, extending along a second direction perpendicular to the first direction; an OLED unit, including a first electrode, a second electrode, and an organic light emitting layer formed between the first electrode and the second electrode; and a heat conducting layer, formed of an insulating heat conduction material and connected to the scan line, the data line, and the first electrode in the OLED unit.
The present invention discloses an organic electroluminescent display panel, including a substrate; a thin film transistor formed on the substrate; a bottom electrode formed on a drain of the thin film transistor; a light-blocking layer formed on the bottom electrode, the light-blocking layer has a first through hole that exposes the bottom electrode; a pixel define layer formed on the thin film transistor, the bottom electrode, and the light-blocking layer, the pixel define layer has a second through hole, the second through hole completely exposes the first through hole; an organic electroluminescent device formed on the bottom electrode, an edge of the organic electroluminescent device is formed on the light-blocking layer; and a top electrode formed on the organic electroluminescent device. The present invention uses the light-blocking layer to block the edge of the organic electroluminescent device, thereby eliminating the non-uniform brightness of the edge of the organic electroluminescent device.
A display device includes a display pixel and a sensor pixel. The display pixel includes a light-emitting element including a first pixel electrode. The display pixel further includes a pixel circuit electrically coupled to the light-emitting element. The sensor pixel includes a sensor electrode overlapping the first pixel electrode. The sensor pixel further includes a sensor circuit electrically coupled to the sensor electrode. The first pixel electrode includes a first opening in a region overlapping the sensor electrode.
An array substrate and a manufacturing method thereof, and a display device are provided. The array substrate includes a base substrate; a planarization layer, located on the base substrate; a first electrode layer, located on a side of the planarization layer away from the base substrate; and an insulating layer, located on a side of the planarization layer and the first electrode layer away from the base substrate, the insulating layer includes a plurality of first pores.
An array substrate includes a display region and a non-display region arranged adjacent to the display region. A plurality of signal connection lines is arranged at the non-display region, and each signal connection line is configured to connect a signal source and a signal line at the display region. At least one signal connection line includes a main line portion and at least one resistance adjustment portion connected in parallel to the main line portion.
At least one latch of a page buffer of a nonvolatile memory device includes a capacitor that selectively stores a voltage of a sensing node. The capacitor includes at least one first contact having a second height corresponding to a first height of each of cell strings, and at least one second contact to which a ground voltage is supplied. The at least one second contact has a third height corresponding to the first height, disposed adjacent to the at least one first contact, and electrically separated from the at least one first contact.
A semiconductor memory device including a substrate including a first block and a second block each having a cell array region and a connection region, a stack including insulating layers and gate electrodes and extending from the cell array region to the connection region, first cell channel structures in the cell array region of the first block and passing through the stack to be electrically connected to the substrate, first dummy channel structures in the connection region of the first block and passing through the stack, second cell channel structures in the cell array region of the second block and passing through the stack, and second dummy channel structures in the connection region of the second block and passing through the stack may be provided. The first dummy channel structures are electrically insulated from the substrate, while the second dummy channel structures are electrically connected to the substrate.
According to one embodiment, a semiconductor memory device includes a stacked body, first memory portions, and second memory portions. The stacked body includes conductive layers. The conductive layers are arranged in a first direction and extend in a second direction. The stacked body includes first and second regions. The second region is arranged with the first region in the second direction. The first memory portions extend in the first direction through the first region and are arranged at a first pitch along the second direction. The second memory portions extend in the first direction through the second region and are arranged at the first pitch along the second direction. A distance between a first center of one of the first memory portions and a second center of one of the second memory portions is longer than the first pitch and shorter than 2 times the first pitch.
A semiconductor device and a manufacturing method thereof are provided. The method includes providing a substrate, a plurality of word lines and a plurality of bit lines, and then forming a storage node contact on each source/drain region, so that a width of a top surface of each storage node contact in a direction is less than a width of a bottom surface of each storage node contact.
One illustrative method disclosed herein includes, among other things, forming a source/drain contact structure between two spaced-apart transistor gate structures, forming a non-uniform thickness layer of material on the upper surface of the gate cap layers and on the upper surface of the source/drain contact structure, wherein the non-uniform thickness layer of material is thicker above the gate cap layers than it is above the source/drain contact structure, forming an opening in the non-uniform thickness layer of material so as to expose at least a portion of the source/drain contact structure, and forming a V0 via that is conductively coupled to the exposed portion of the source/drain contact structure, the V0 via being at least partially positioned in the opening in the non-uniform thickness layer of material.
The present disclosure provides a substrate, including: a first line; a second line; a thin-film transistor (TFT) between the first line and the second line, having a floating gate structure, a source electrode electrically connected to the first line, and a drain electrode electrically connected to the second line; and a first point-discharge structure between the floating gate structure of the TFT and the first line.
An integrated assembly includes an insulative mass with a first region adjacent to a second region. The first region has a greater amount of one or more inert interstitial elements incorporated therein than does the second region. Some embodiments include an integrated assembly which has vertically-extending channel material pillars, and which has memory cells along the channel material pillars. A conductive structure is under the channel material pillars. The conductive structure includes doped semiconductor material in direct contact with bottom regions of the channel material pillars. An insulative mass is along the bottom regions of the channel material pillars. The insulative mass has an upper region over a lower region. The lower region has a greater amount of one or more inert interstitial elements incorporated therein than does the upper region. Some embodiments include methods of forming integrated assemblies.
In a method of manufacturing a stack package, a first semiconductor chip is formed on a first package substrate. A second semiconductor chip is formed on a second package substrate. A plurality of signal pads and a thermal diffusion member are formed on a lower surface and/or an upper surface of an interposer substrate, the signal pad having a first height and the thermal diffusion member having a second height greater than the first height. The first package substrate, the interposer substrate, and the second package substrate are sequentially stacked on one another such that the thermal diffusion member is in contact with an upper surface of the first semiconductor chip or a lower surface of the second package substrate.
Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
A semiconductor device package is provided. The semiconductor device package includes a stack of semiconductor dies over a substrate, the substrate including a plurality of electrical contacts, and an annular lower lid disposed over the substrate and surrounding the stack of semiconductor dies. The annular lower lid includes a lower surface coupled to the substrate, an upper surface coupled to an upper lid, and an outer surface in which is formed an opening. The semiconductor device assembly further includes a circuit element disposed in the opening and electrically coupled to at least a first one of the plurality of electrical contacts. The semiconductor device assembly further includes the upper lid disposed over the annular lower lid and the stack of semiconductor dies.
An antenna semiconductor package device includes: (1) a waveguide cavity having a radiation opening; and (2) a first directing element outside of the waveguide cavity and separated from the waveguide cavity by a first gap.
A semiconductor package includes a substrate, a semiconductor element disposed on the substrate, an encapsulating layer covering side surfaces and a top surface of the semiconductor element, an electromagnetic shield layer covering side surfaces of the substrate and side surfaces and a top surface of the encapsulating layer, and a titanium oxide layer formed above a top surface of the electromagnetic shield layer, and including a first portion containing divalent titanium oxide and a second portion containing tetravalent titanium oxide.
A face-up fan-out electronic package including at least one passive component located on a support. The electronic package can include a die. The die can include a plurality of conductive pillars having a proximal end communicatively coupled to the first side of the die and a distal end opposite the proximal end. A mold can at least partially surround the die. The mold can include a first surface that is coplanar with the distal end of the conductive pillars and a second surface opposing the first surface. In an example, the passive component can include a body and a lead. The passive component can be located within the mold. The lead can be coplanar with the first surface, and the body can be located at a distance from the second surface. The support can be located between the body and the second surface.
A semiconductor apparatus includes a first semiconductor element, a second semiconductor element, and a metal pattern formed on the second semiconductor element. The metal pattern includes a first connection connected to the first semiconductor element and a second connection connected to a first terminal portion of the first semiconductor element and positioned away from the first connection. A first electrically conductive path formed between the first and second connections has a larger electric resistance than an electric resistance of a second electrically conductive path formed between the second connection and the first terminal portion.
A power semiconductor package includes a first direct bonded copper (DBC) substrate having a plurality of connection traces on a first face of the first DBC substrate. A plurality of die are coupled to the connection traces, each die coupled to one of the connection traces at a first face of the die. A second DBC substrate includes connection traces on a first face of the second DBC substrate. A second face of each die is coupled to one of the connection traces of the first face of the second DBC substrate. A cavity between the first face of the first DBC substrate and the first face of the second DBC substrate is filled with an encapsulating compound. Terminal pins may be coupled to connection traces on the first face of the first DBC substrate. More than two DBC substrates may be stacked to form a stacked power semiconductor package.
The present application relates to a power semiconductor device, including a substrate having a first side and a second side, the first side and the second side being located opposite to each other, wherein the first side includes a cathode and the second side includes an anode, wherein a junction termination of a p/n-junction is provided at at least one surface of the substrate, preferably at at least one of the first side and the second side, the junction termination is coated by a passivating coating, the passivating coating including at least one material selected from the group consisting of an inorganic-organic composite material, parylene, and a phenol resin comprising polymeric particles. A device as described above thus addresses issues of passivation of junction terminations and thus prevents or at least reduces the danger of fatal defects such as unstable device operation caused by changes in film properties, instability, water permeability, permeability of movable ions such as sodium, pinholes and cracks, and aluminum metal disconnection or corrosion due to degradation and stress.
A method of making a semiconductor device including forming a first blanket layer on a substrate; forming a second blanket layer on the first blanket layer; patterning a first fin of a first transistor region and a second fin of a second transistor region in the first blanket layer and the second blanket layer; depositing a mask on the second transistor region; removing the first fin to form a trench; growing a first semiconductor layer in the trench where the first fin was removed; and growing a second semiconductor layer on the first semiconductor layer.
A through substrate via (TSV) and method of forming the same are provided. The method of making the TSV may include etching a via opening into the backside of semiconductor substrate, the via opening exposing a surface of a metal landing structure. A conductive layer is deposited over the backside of semiconductor substrate, sidewalls of the via opening, and exposed surface of the metal landing structure. The conductive layer is coated with a polymer material, filling the via opening. The polymer material is developed to remove the polymer material from the backside of semiconductor substrate, leaving the via opening filled with undeveloped polymer material. A planar backside surface of semiconductor substrate is formed by removing the conductive layer.
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate.
In parallel with a lower-side scrub cleaning step where a brush is contacted with a lower surface inclined portion of a substrate, a center-side spray cleaning step is performed where a collision position of liquid droplets with respect to an upper surface of the substrate is moved between the center of the substrate and the middle of the substrate while the liquid droplets collide with the upper surface of the substrate. Thereafter, in parallel with an upper-side scrub cleaning step where the brush is contacted with an upper surface inclined portion of the substrate, an outer circumference-side spray cleaning step is performed where the collision position of the liquid droplets with respect to the upper surface of the substrate is moved between the middle of the substrate and the outer circumference of the substrate while the liquid droplets collide with the upper surface of the substrate.
Methods of drying a semiconductor substrate may include applying a drying agent to a semiconductor substrate, where the drying agent wets the semiconductor substrate. The methods may include heating a chamber housing the semiconductor substrate to a temperature above an atmospheric pressure boiling point of the drying agent until a vapor-liquid equilibrium of the drying agent within the chamber has been reached. The methods may further include venting the chamber, where the venting vaporizes the liquid phase of the drying agent from the semiconductor substrate.
A method of manufacturing a semiconductor device that includes a resin package sealing a semiconductor element and a pair of metal plates interposing the semiconductor element therebetween, in which each of the pair of metal plates is exposed at corresponding one of both surfaces of the resin package is disclosed. The method may include preparing an assembly in which the semiconductor element is connected to the pair of metal plates; setting the assembly in a cavity of a mold, wherein one metal plate is in contact with a bottom surface of the cavity and a space is provided above the other metal plate; forming the resin package by injecting a molten resin into the cavity so as to cover an upper side of the other metal plate, stopping the injecting of the molten resin with a part of the space on an upper side of the cavity unfilled.
A gettering layer forming method includes a coating step of applying a solution of metal salt to a back side of a wafer, and a diffusing step of heating the wafer after performing the coating step, thereby diffusing the metal salt on the back side of the wafer to form a gettering layer containing the metal salt on the back side of the wafer, in which the metal salt is diffused in the gettering layer.
A semiconductor structure includes a substrate, at least one first gate structure, at least one first spacer, at least one source drain structure, at least one conductive plug, and at least one protection layer. The first gate structure is present on the substrate. The first spacer is present on at least one sidewall of the first gate structure. The source drain structure is present adjacent to the first spacer. The conductive plug is electrically connected to the source drain structure. The protection layer is present between the conductive plug and the spacer.
Methods of depositing fluorine-free tungsten by sequential CVD pulses, such as by alternately pulsing a fluorine-free tungsten precursor and hydrogen in cycles of temporally separated pulses, are provided. Some methods involve depositing fluorine-free tungsten by sequential CVD without depositing a tungsten nucleation layer. Methods also include depositing tungsten directly on a substrate surface using alternating pulses of a chlorine-containing tungsten precursor and hydrogen without treating the substrate surface. Methods also include depositing a tungsten layer using a reducing agent and fluorine-free tungsten-containing precursor and depositing bulk tungsten in sequential CVD cycles of alternating pulses of hydrogen and a tungsten-containing precursor.
A process of growing a barrier layer made of AlGaN on a GaN channel layer is disclosed. The process includes steps of, growing the GaN channel layer, growing the AlGaN barrier layer, and growing a cap layer made of GaN. The growth temperature of the AlGaN barrier layer monotonically lowers from the initial temperature, which may be equal to the growth temperature for the GaN channel layer, to the finish temperature that is lower than the initial temperature and may be substantially equal to the growth temperature of the GaN cap layer.
A method of processing semiconductor material includes applying an organosulfur solution to a top surface of a semiconductor material, the organosulfur solution having at least one organosulfur compound. The at least one organosulfur compound has at least one sulfur atom double bonded to a carbon atom and a pH of not less than 8. An organosulfur solution may be applied at temperatures above 25° C. to increase sulfur deposition rates and increase sulfur coverage on a surface of a semiconductor material.
Described processing chambers may include a chamber housing at least partially defining an interior region of the semiconductor processing chamber. The chambers may include a pedestal. The chambers may include a first showerhead positioned between the lid and the processing region, and may include a faceplate positioned between the first showerhead and the processing region. The chambers may also include a second showerhead positioned within the chamber between the faceplate and the processing region of the semiconductor processing chamber. The second showerhead may include at least two plates coupled together to define a volume between the at least two plates. The at least two plates may at least partially define channels through the second showerhead, and each channel may be characterized by a first diameter at a first end of the channel and may be characterized by a plurality of ports at a second end of the channel.
A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
Disclosed is a plasma processing apparatus including: a processing container that defines a processing space; a microwave generator that generates microwaves for plasma excitation; a dielectric having a facing surface that faces the processing space; a slot plate provided on a surface of the dielectric opposite to the facing surface and formed with a plurality of slots that radiate the microwaves to the processing space through the dielectric; and a conductor pattern that is provided on the facing surface of the dielectric and converges an electric field corresponding to the microwaves radiated from each of the slots.
A plasma processing method for a workpiece in a plasma processing apparatus includes (i) performing a first plasma processing on a workpiece, and (ii) performing a second plasma processing on the workpiece. Power of second radio frequency waves set in the second plasma processing is greater than the power of the second radio frequency waves set in the first plasma processing. In the second plasma processing, a magnetic field distribution having a horizontal component on an edge side of the workpiece greater than a horizontal component on a center of the workpiece is formed by an electromagnet.
The system described herein relates to a high-voltage supply unit for providing an output voltage for a particle beam apparatus, wherein the particle beam apparatus is embodied as, for example, an electron beam apparatus and/or an ion beam apparatus. The system described herein is based on the fact that it was recognized that a bipolar voltage supply unit can be formed by means of a unipolar first current source and a unipolar second current source, said bipolar voltage supply unit enabling a load current in two directions. The high-voltage supply unit according to the system described herein can be operated in the 4-quadrant operation. In the 4-quadrant operation, a first voltage source for supplying the first current source and a second voltage source for supplying the second current source are embodied as different voltage sources.
There is provided an energy filter capable of being simplified in structure and of achieving low aberrations. The energy filter (100) includes a first sector magnet (10) and a second sector magnet (20). The first and second magnets (10, 20) are configured mirror-symmetrically with respect to a symmetry plane (M). There are one focal point of crossover in the X direction and one focal point of crossover in the Y direction. The focal point of crossover in the X direction and the focal point of crossover in the Y direction are at an energy dispersive plane (S2). There are two focal points of image in the X direction and two focal points of image in the Y direction. The focal points of image in the X direction and the focal points of image in the Y direction are at the symmetry plane (M) and at an achromatic plane (A2).
An electromechanical switching device includes a first electrode, comprising layers of a first 2D layered material, which layers exhibit a first surface; a second electrode, comprising layers of a second 2D layered material, which layers exhibit a second surface opposite the first surface; and an actuation mechanism; wherein each of the first and second 2D layered materials has an anisotropic electrical conductivity, which is lower transversely to its layers than in-plane with the layers; the first electrode includes two distinct areas alongside the first surface, which areas differ in at least one structural, electrical and/or magnetic property; and at least one of the first and second electrodes is actuatable by the actuation mechanism, such that actuation thereof for modification of an electrical conductance transverse to each of the first surface and the second surface to enable current modulation between the first electrode and the second electrode.
A contactor includes a coil through which current flows in an active state of the contactor; a controller configured to control the contactor; and a voltage converter, wherein, in the active state, the voltage converter is configured to converts an input voltage into a coil voltage which drops across the coil. The voltage converter can be electrically switched back into the active state from an inactive state using the controller. The contactor is configured to be switched into the active state from the inactive state by activating the voltage converter. The contactor is switched out of the active state into the inactive state by deactivating the voltage converter.
A medium voltage pole assembly which includes a supporting frame, a pole insulator having a first and a second electrical terminal protruding therefrom, and a pole body housed within the pole insulator and having a first and a second electrical contact couplable and uncouplable with each other and respectively electrically connected to the first and second electrical terminal. The supporting frame includes first coupling means including a first coupling surface and the pole insulator includes second coupling means including one or more flaps slidingly couplable to the first coupling surface and mechanically fixing the pole insulator to the supporting frame.
A method of manufacturing a winding-type electronic component using stranded wires which can suppress a disconnection of a winding when a plurality of windings is twisted. The method of manufacturing a winding-type electronic component includes: a preparation step of allowing a chuck to hold a core having a winding core portion (14) and flange portions; a first step of fixing a portion of each of windings supplied from nozzles (N1, N2) to the flange portion; and a second step of twisting the windings by rotating the chuck.
An antenna system is provided that is capable of transmitting and receiving using near-field magnetic induction (NFMI). The antenna system includes a non-magnetic metallic core, a ferrite shield, and at least one electrically conducting winding. The ferrite shield is positioned between the non-magnetic metallic core and the electrically conducting winding. The non-magnetic metallic core may be a battery. The ferrite material forms a low impedance path for the magnetic field lines and increases inductance, thus providing increased energy efficiency and transmission quality. The antenna system is suitable for use in space constrained battery powered devices, such as hear instruments including hearing aids and earbuds.
The present invention aims to provide a NdFeB system sintered magnet capable of improving the magnetization characteristic. The NdFeB system sintered magnet is a NdFeB system sintered magnet with the c axis oriented in one direction, characterized in that: the median of the grain size of the crystal grains at a section perpendicular to the c axis is 4.5 μm or less, and the area ratio of the crystal grains having grain sizes of 1.8 μm or smaller on the aforementioned section is 5% or lower. The median of the grain size is decreased (to 4.5 μm or less), whereby improve the coercive force is improved. Simultaneously, the area ratio of the crystal grains having grain sizes of 1.8 μm or smaller is decreased (to 5% or lower) to reduce the number of crystal grains having no magnetic wall formed, whereby the magnetization characteristic is improved.
The present invention provides a rare earth based magnet that inhibits the high temperature demagnetization rate even when less or no heavy rare earth elements such as Dy, Tb and the like are used. The rare earth based magnet according to the present invention includes R2T14B main phase crystal grains and grain boundary phases between adjacent main phase crystal grains. In any cross-section of the rare earth based magnet, when evaluating the circular degree of the main phase crystal grains with Wadell's Roundness A, the shape of the main phase crystal grains is controlled such that the Roundness A becomes 0.24 or more.
This insulated wire includes an insulating coating formed on a surface of a conductive wire body, and a soldered portion for electric conduction. The soldered portion is formed by attaching dicarboxylic acid onto a surface of the insulating coating, and by performing solder plating in a state where the dicarboxylic acid is attached onto the surface of the insulating coating. In addition, this method for manufacturing an insulated wire includes a surface treatment step of attaching the dicarboxylic acid onto a surface of an insulating coating which becomes the soldered portion, and a soldering step of performing the solder plating by immersing the surface treated portion of the insulating coating in a heated solder melt.
An insulated wire includes a conductor and an insulating layer formed on an outer periphery of the conductor, and the insulating layer is composed essentially of a polyimide resin having a repeating unit A represented by Formula (1) as a part of a molecular structure, in which a water absorption coefficient is not greater than 2.8% after 24 hours under condition at temperature of 40° C. and humidity of 95%.
Systems and methods for formulating a personalized skincare product for a user. Data inputs reflecting dermal information of the user (e.g., hydration level measurements, oil level measurements, and a photograph of the user's skin reflecting a set of skin concerns) are collected by a computing device and used to determine a set of normalized scores. A skin health data set is generated based on the normalized scores and stored in memory. A skin health metric is determined based on the skin health data set and is stored in memory. The computing device determines, using a machine learning framework, one or more first skincare product formulations based on the user skin health data set. The formulation(s) can be used to manufacture one or more customized skincare products for the user and can be iteratively refined over time, e.g., by collecting additional data from the user over time.
The present teaching relates to medical record completion. In one example, a medical record of a patient is received. The medical record is associated with a plurality of components comprising a first component with a populated value and a second component with an unpopulated value. The unpopulated value of the second component is estimated based on the populated value of the first component in accordance with a first model. Information associated with the medical record and/or the patient is obtained. The values of the first and second components are validated based on the obtained information in accordance with a second model. The first and second models are dynamically updated based on data related to medical transactions of a plurality of patients.
An oscillator circuit includes a voltage controlled oscillator (VCO) configured to generate a clock signal having a clock period that is adjustable based on a control signal. The oscillator circuit includes a time to voltage converter configured to receive the clock signal and generate a compensation voltage potential that is proportional to the clock period and a zero temperature coefficient (ZTC) current. The oscillator circuit includes an amplifier configured to generate the control signal responsive to the compensation voltage potential and a temperature independent reference voltage potential. A method includes applying a control signal to a VCO, generating a clock signal having a clock period responsive to the control signal, generating a compensation voltage potential, and adjusting the clock period using the compensation voltage potential. A memory device includes the oscillator circuit.
A non-volatile semiconductor memory device includes a memory cell array and a control circuit. A control circuit performs an erase operation providing a memory cell with a first threshold voltage level for erasing data of a memory cell, and then perform a plurality of first write operations providing a memory cell with a second threshold voltage level, the second threshold voltage level being higher than the first threshold voltage level and being positive level. When the control circuit receives a first execution instruction from outside during the first write operations, the first execution instruction being for performing first function operation except for the erase operation and the first write operations, the circuit performs the first function operation during the first write operations.
Memory devices with controlled wordline ramp rates and associated systems and methods are disclosed herein. In one embodiment, a memory device includes at least one voltage regulator and a plurality of wordlines. The memory device is configured, during a programming operation of the memory region, to ramp a selected wordline to a desired programming voltage while ramping one or more adjacent, unselected wordlines electrically coupled to the selected wordline to desired inhibit voltage(s) using the at least one voltage regulator. In some embodiments, the memory device ramps the selected wordline and the one or more adjacent, unselected wordlines such that the one or more adjacent, unselected wordlines reach the desired inhibit voltage(s) when the selected wordline reaches the desired programming voltage. In these and other embodiments, the memory device ramps the selected wordline to the desired programming voltage without floating the selected wordline.
The present disclosure includes multifunctional memory cells. A number of embodiments include a gate element, a charge transport element, a first charge storage element configured to store a first charge transported from the gate element and through the charge transport element, wherein the first charge storage element includes a nitride material, and a second charge storage element configured to store a second charge transported from the gate element and through the charge transport element, wherein the second charge storage element includes a gallium nitride material.
A resistive random access memory cell includes three resistive random access memory devices, each resistive random access memory device having an ion source layer and a solid electrolyte layer. The first and second resistive random access memory devices are connected in series such that either both ion source layers or both solid electrolyte layers are adjacent to one another. A third resistive random access memory device is connected in series with the first and second resistive random access memory devices.
Methods, systems, and devices for operating a memory device are described. A sense amplifier may be used to precharge an access line to increase the reliability of the sensing operation. The access line may then charge share with the memory cell and a capacitor, which may be a reference capacitor, which may result in high-level states and low-level states on the access line. By precharging the access line with the sense amplifier and implementing charge sharing between the access line and a capacitor, the resulting high-level state and the low-level states on the access line may account for any offset voltage associated with the sense amplifier.
A semiconductor device may include: a low-order bit storage block configured for storing N low-order bit signals contained in N access information signals based on an access address signal, the N access information signals indicating the numbers of accesses to N access target blocks, and generating an indication signal indicating whether a low-order bit signal corresponding to the current input access address signal among the N low-order bit signals has reached a predetermined value; a high-order bit storage block configured for storing M high-order bit signals contained in M access information signals among the N access information signals based on an allocation control signal; and a high-order bit control block configured for generating the allocation control signal corresponding to positions in which the M high-order bit signals are to be stored, based on the access address signal and the indication signal.
A memory device includes a write port, a read port, source lines, bit lines, and word lines orthogonal to the bit lines. The memory device also includes memory cells that can be arrayed in columns that are parallel to the bit lines and in rows that are orthogonal to the bit lines. The memory cells are configured so that a write by the write port to a first memory cell in a column associated with (e.g., parallel to) a first bit line and a read by the read port of a second memory cell in a column associated with (e.g., parallel to) a second, different bit line can be performed during overlapping time periods (e.g., at a same time or during a same clock cycle).
Provided herein are systems and apparatus for reducing vibration interaction between hard drives. In one implementation, an apparatus is provided comprising a backplane that comprises a substrate comprising an at least partially flexible material and a connector island assembly formed in the substrate. The connector island assembly comprises a spring element and a connector island. The spring element extends from a main portion of the substrate, and the connector island extends from the spring element. The connector island assembly is surrounded by the main portion of the substrate and configured to flex independently of the main portion of the substrate.
Embodiments are directed towards presenting a current-playing-position marker on a progress bar along with real time content. An initial timeline value of the content may be determined, along with an initial presentation timestamp value for the first frame of the content. For each next frame of the content, a next timeline value may be determined based on a difference between a next presentation timestamp value for a corresponding next frame and the initial presentation timestamp value, and mapping of the next presentation timestamp value for the corresponding next frame and the next timeline value in the index file. The content and a progress bar may be displayed to the user on a remote device based on the index file. A position of the current-playing-position marker on the progress bar for each frame of the content may be determined based on the next timeline value for each corresponding frame.
A method of manufacturing magnetic tape storage data cartridges may include cutting a master tape having a first width into multiple tape sections that each have a smaller width than the first width, cleaning the tape sections to remove debris caused by the cutting, and writing the servo tracks on each tape section after the tape section is cleaned. The method may further include spooling each tape section into a respective tape cartridge after writing the servo track on the tape section.
One embodiment provides a system comprising a motor and a disc selector mechanism. The disc selector mechanism is coupled to a bottom of a guide cage and maintained in a space below the cage. The disc selector mechanism comprises a shaft, transmission components, and a slide assembly that is laterally slidable along the shaft in response to the motor driving the transmission components. The slide assembly comprises a slide coupled to the shaft, a pivot bar coupled to the slide, and pick blades pivotally coupled to the pivot bar. A linear motion of the slide assembly along the shaft drives a linear translation of the pivot bar. The linear translation drives a pick blade of the slide assembly to move towards a side of the cage and out of the space and to pivot to a raised position to contact and lift a disc upwards into a disc gripper device.
Presently described are systems and methods for identifying a mute/sound attribute of an audio sample set having first-channel samples and second-channel samples. An embodiment takes the form of a method that includes: (i) receiving the audio sample set; (ii) for each first-channel sample, determining a first max amplitude and a first min amplitude; (iii) calculating a first span based on a first function of the first max amplitude and the first min amplitude; (iv) for each second-channel sample, determining a second max amplitude and a second min amplitude; (v) calculating a second span based on a function of the second max amplitude and the second min amplitude; and (vi) identifying the audio sample set as having a sound attribute if both the first span and the second span are greater than a min-volume threshold.
A method of measuring state of vigilance of a pilot by a measuring device to measure time between which a sound wave is emitted by a loudspeaker in the piloting station of an aircraft and is received by the microphone of a headset of a pilot and to calculate coordinates of a sphere centered on the loudspeaker and on the perimeter of which the microphone is situated. Calculation of points of intersection of spheres centered on different loudspeakers provides possible microphone positions in the space of the piloting station. These positions are those of the head of the pilot when the headset is used. Via the knowledge of at least one possible position of the head of the pilot in the piloting station, the measuring device can measure the state of vigilance of the pilot and to alert in case of a confirmed lack of vigilance of the pilot.
The present invention relates to a signal processing apparatus and a signal processing method, an encoder and an encoding method, a decoder and a decoding method, and a program capable of reproducing music signal having a better sound quality by expansion of frequency band.An encoder sets an interval including 16 frames as interval section to be processed, outputs high band encoded data for obtaining the high band component of an input signal and low band encoded data obtained by encoding the low band signal of the input signal for each section to be processed. In this case, for each frame, a coefficient used in estimation of the high band component is selected and the section to be processed is divided into continuous frame segments including continuous frames from which the coefficient with the same section to be processed is selected. In addition, high band encoded data is produced which includes data including information indicating a length of each continuous frame segment, information indicating the number of continuous frame segments included in the section to be processed and a coefficient index indicating the coefficient selected in each continuous frame segment. The present invention is applicable to the encoder.
A audio signal encoding method includes: dividing a frequency band of an audio signal into a plurality of sub-bands, and quantifying a sub-band normalization factor of each sub-band; determining signal bandwidth of bit allocation according to the quantified sub-band normalization factor, or according to the quantified sub-band normalization factor and bit rate information; allocating bits for a sub-band within the determined signal bandwidth; and coding a spectrum coefficient of the audio signal according to the bits allocated for each sub-band. According to embodiments of the present disclosure, during coding and decoding, signal bandwidth of bit allocation is determined according to the quantified sub-band normalization factor and bit rate information. In this manner, the determined signal bandwidth is effectively coded and decoded by centralizing the bits, and audio quality is improved.
Aspects include engaging a user in a chat flow by a dialog system. A user sentiment associated with a system response provided by the dialog system as part of the chat flow is determined based on observation of the user. A next system response is rerouted from a planned sequence of the chat flow to a sentiment-based repair sequence to alter content delivered to the user based on a detected aspect of the user sentiment.
Methods and systems are disclosed for enhancing the security of a user device such as a voice command device. A computing device associated with the user device may be configured to receive an indication of a trigger, such as a predetermined word or passcode. In response to receiving the indication of the trigger, the computing device may be configured to determine a verification signal marker and to cause transmission of the verification signal marker. The computing device may receive an audio input comprising a voice command and a detected signal marker and verify the voice command based on a comparison of the detected signal marker and the verification signal marker. In response to the verifying the voice command, the computing device may be configured to cause execution of an operation associated with the voice command such as tuning to a specific channel on a nearby set-top box.
A computer implemented method of routing a verbal input to one of a plurality of handlers, comprising using one or more processors adapted to execute a code, the code is adapted for receiving a verbal input from a user, applying a plurality of verbal content identifiers to the verbal input, each of the verbal content identifiers is adapted to evaluate an association of the verbal input with a respective one of a plurality of handlers by computing a match confidence value for one or more features, such as an intent expressed by the user and/or an entity indicated by the user, extracted from the verbal input and routing the verbal input to a selected one of the handlers based on the matching confidence value computed by the plurality of verbal content identifiers. The selected handler is adapted to initiate one or more actions in response to the verbal input.
Audio features, such as perceptual linear prediction (PLP) features and time derivatives thereof, are extracted from frames of training audio data including speech by multiple speakers, and silence, such as by using linear discriminant analysis (LDA). The frames are clustered into k-means clusters using distance measures, such as Mahalanobis distance measures, of means and variances of the extracted audio features of the frames. A recurrent neural network (RNN) is trained on the extracted audio features of the frames and cluster identifiers of the k-means clusters into which the frames have been clustered. The RNN is applied to audio data to segment audio data into segments that each correspond to one of the cluster identifiers. Each segment can be assigned a label corresponding to one of the cluster identifiers. Speech recognition can be performed on the segments.
A simple hearing enhancement device that takes the normally adequately loud sound levels and optimizes selective frequency gain of the patient's ear passage to improve speech comprehension.
An apparatus for facilitating control of midi-sequence generation is disclosed. The apparatus may include a midi-sequence module configured for generating midi-sequences. Further, the apparatus may also include a foot-operated switch configured to operate the midi-sequence module. Additionally, the apparatus may include a docking station configured to connect the apparatus to a mobile device. Accordingly, the midi-sequence module may be controlled through the mobile device. Further, in some embodiments the midi-sequence module may be included in the mobile device instead of the apparatus. Accordingly, the apparatus may include a switch port configured to electrically couple the foot-operated switch with the mobile device in order to control the midi-sequence module included in the mobile device.
A metal shell and metal inserts of an acoustic drum. In some examples, an acoustic drum having a metal shell can include one or more metal inserts configured to control the tone of the drum. In some configurations, the one or more inserts can form a portion of a bearing edge at one or more openings of the shell. Moreover, in some examples the inserts can be fitted to be in contact with the shell. The shape and configuration of the metal inserts can therefore control and refine the tone of the drum, allowing, for example, a drum with a metal shell to have a tone resembling that of a wooden drum with the sensitivity and power of a metal drum.
A drumstick has a conventional tip and tapered shank, but the handle portion on the shaft has a wavy profile, with a nominal diameter and with the peaks rising above the nominal diameter and the valleys recessed below the nominal diameter. Whether or not the drumstick has a wavy handle, the outer surface of the drumstick has a tack which increases with increasing moisture of the drumstick outer surface, e.g., the tack increases between an initial condition of a drummer's dry skin against a dry drumstick surface and a play condition of a drummer's moist skin against a moist drumstick.
An information handling system operating an adaptive HDR tone mapping system may comprise a display screen including a plurality of pixels operating at a lower dynamic range of brightness values, a graphics processor executing code instructions to prepare data of an HDR digital image for display at the lower dynamic range, to determine a relative brightness ratio comparing a number of pixels in the data for the image to display at a brightness level below a typical display brightness and at or above the typical display brightness, and to generate a tone map to modify the data of the image if the relative brightness ratio does not meet or exceed a preset threshold such that the pixels are mapped to a maximum brightness of a peaking display brightness level of the display screen, and the display screen displaying the plurality of pixels according to the first adaptive tone map modification.
The present disclosure provides a method and a device for driving a GOA circuit, a time controller and a display device. The method includes steps of: determining a bright-dark period for striped patterns on a display panel; and compensating for data signals at rows where the striped patterns are located periodically in accordance with the bright-dark period.
Embodiments are disclosed that relate to modifying a display of a portable electronic device to account for ambient light. For example, one disclosed embodiment provides a method comprising determining an ambient light history including a plurality of ambient light color conditions sensed over a duration of device operation by an ambient light sensor, reading a display-ready image having a plurality of pixels from an image source, adjusting a manner in which the display-ready image is displayed by color-shifting at least a subset of the plurality of pixels based on the plurality of ambient light color conditions in the ambient light history to thereby generate a color-modified image, and displaying the color-modified image on the display of the portable electronic device.
The embodiments of the present disclosure disclose a gate driving circuit and a display panel. In the gate driving circuit, a control unit of a shift register may input a dual pulse control signal to a first control terminal of an output unit; and the output unit outputs a scanning signal having a pulse width equal to a pulse period of the dual pulse control signal to a corresponding gate line under the control of the dual pulse control signal. In this way, the output unit is controlled by the control unit to output a scanning signal of which a pulse width may be modulated, so as to output a gate signal of which a pulse width may be modulated.
A clamping system includes a mast, a bracket clamp engageable with the mast, the bracket clamp including a receiver for receiving a sign, a compression assembly for compressing the mast and the receiver towards each other, and a compression element movable relative to the receiver by the compression assembly, the compression element contacting a side surface of the mast via a plurality of contact features, each contact feature contacting the side surface of the mast at a distinct location on the side surface of the mast.
Methods, systems and computer program products for evaluating contributions in collaborative environments are provided herein. A computer-implemented method includes obtaining indications of tasks of a given workload that are completed by respective ones of a plurality of client devices. The method also includes identifying first and second tasks completed by first and second client devices at first and second times, determining whether the first task provides a clue for the second task and whether the second time is within a designated time window starting after the first time, and analyzing eye-gaze information to determine whether a second user of the second client device observed a first user of the first client device performing the first task. The method further comprises modifying contribution scores for the first and second users responsive to the determinations.
The present invention relates to a system and method for automatically assessing a user's basic literacy skills. More specifically, the invention relates to a system and method for monitoring, tracking, capturing and analyzing information about a user's reading and writing behavior. An input device receives data involving literacy-related activities of a user. A processor executes a predetermined literacy assessment program for implementing a pre-analysis module which performs pre-analysis of the received data, an analysis module which performs a literacy assessment analysis on the pre-analyzed data and a post-analysis module which performs post-analysis assessment of the results of the literacy assessment analysis. An output device outputs the post-analysis assessment assessing the literacy of the user.
Systems, and methods for notifying an occupant of a determined cause for a deviation in a highly automated vehicle are described herein. The vehicle can detect a plurality of objects located in an external environment of the vehicle. The vehicle can determine a deviation from a current path of travel. The vehicle can follow a modified path of travel based on the determined deviation. The vehicle can determine a cause for the deviation by generating a simulation of the vehicle traveling along the current path of travel. The simulation may not include a first detected object of the plurality of detected objects. The vehicle can determine, using the generated simulation, whether the first detected object was the cause for the determined deviation. Responsive to determining that the first detected object was the cause for the determined deviation, the vehicle can notify an occupant of the cause for the determined deviation.
In an encounter vehicle determination apparatus, a probability of a host vehicle entering a host-vehicle intersection on a host-vehicle's course on a map-is estimated. A different-vehicle intersection on a course of a different vehicle on a map either (i) along the host-vehicle's course or (ii) from a connection road with the host-vehicle intersection to the host-vehicle's course is extracted within a predetermined range based on vehicle information acquired from the different vehicle via inter-vehicle communications. A probability of the different vehicle entering the different-vehicle intersection is estimated. A probability of encounter between the host vehicle and the different vehicle at the host-vehicle intersection is calculated from the estimated probabilities of (i) the host vehicle entering the host-vehicle intersection and (ii) the different vehicle entering the different-vehicle intersection. The different vehicle having the probability of encounter equal to or more than a threshold is determined to encounter the host vehicle.
A computer-implemented method of generating and broadcasting telematics and/or image data is provided. Telematics and/or image data may be collected, with customer permission, in real-time by a mobile device (or a Telematics App running thereon) traveling within an originating vehicle. The telematics data may include acceleration, braking, speed, heading, and location data associated with the originating vehicle. The mobile device may generate an updated telematics data broadcast including up-to-date telematics data at least every few seconds; and then broadcast the updated telematics data broadcast at least every few seconds via wireless communication to another computing device to facilitate alerting another vehicle or driver of an abnormal traffic condition or event that the originating vehicle is experiencing. An amount that an insured uses or otherwise employs the telematics data-based risk mitigation or prevention functionality may be used with usage-based insurance, or to calculate or adjust insurance premiums or discounts.
An embodiment of the invention may include a method, computer program product and computer system for managing mobile objects. The embodiment may identify, by an event agent (EA), an event occurring in a geographic space in which a plurality of mobile objects move. The embodiment may include determining the event is an expected event based on predicting time-series changes of the event handled by the EA. The embodiment may manage the one mobile object based on the expected event.
Techniques are described for detecting and handling unauthenticated commands in a property monitoring system. In some implementations, a monitoring system may include sensors located throughout a property, a monitoring control unit, and an input device. The monitoring control unit may be configured to receive data collected by the sensors, as well as an input command detected by the input device. For an input command that does not include authentication information, the monitoring control unit may generate property state information based on the sensor data, then analyze the property state data and the input command against one or more rules that relate to authorization of unauthenticated commands. Based on the analysis, the monitoring control unit may determine whether to perform the action corresponding to the input command or whether to perform another action, for example, generating and providing a notification or authorization request to a user.
A method includes receiving location data of a monitoring device when carried by a user and receiving motion data of the monitoring device. The motion data is associated with a time of occurrence and the location data. The method includes processing the received motion data to identify a group of the motion data having a substantially common characteristic and processing the location data for the group of the motion data. The group of motion data by way of processing the location data provides an activity identifier. The motion data includes metric data that identifies characteristics of the motion data. The method includes transferring the activity identifier and the characteristics of the motion data to a screen of a device for display. The activity identifier being a graphical user interface that receives an input for rendering more or less of the characteristics of the motion data.
Various arrangements for hazard detector event tracking is presented. A system may include a hazard detector and a computer server system. Indications of events that occurred at the hazard detector may be provided to and stored by a computer server system. A user interface application executed on a mobile device may receive the indications of events that occurred at the hazard detector. A timeline may be generated that graphically represents the indications of events. The generated timeline may be output for presentation via a display of the mobile device.
In an embodiment, a method determines one or more sources of carbon monoxide (CO) in a smart-home environment that includes a plurality of smart devices that have at least measurement and communication capabilities. The method includes measuring a level of CO in the smart-home environment to generate a CO measurement, and providing the CO measurement and one or more current characteristics of the smart-home environment, from one or more of the smart devices to an analyzing device. The method further includes evaluating, by the analyzing device and with the CO measurement and the current characteristics of the smart-home environment, a set of CO correlation scenarios that attribute generation of CO to a corresponding one of a set of specific sources, and selecting one or more of the specific sources as the most likely source of the CO, by aggregating results of the correlation scenarios.
This disclosure provides a wagering system associated with a first wagering facility, the system communicably coupled with a network and including a memory operable to store betting odds on a plurality of wagering events hosted by the first wagering facility. The system further includes a processor coupled to the memory and operable to receive a first bet on a particular event via the network, the particular event comprising at least one of the wagering events hosted by the first wagering facility. If a second bet is received within a predetermined period of time after the first bet is received, then the processor recalculates the betting odds on the particular event based upon both of the first bet and the second bet. If a second bet is not received within a predetermined period of time after the first bet is received, then the processor recalculates the betting odds on the particular event based upon the first bet.
A game machine comprises: a lottery mechanism where a plurality of pockets, each being correlated to each choice, are provided so that at least one choice is selected from a plurality of choices, and a lottery that by making a ball enter any one of the plurality of pockets, the choice correlated to the pocket is selected is executed; and a discharging mechanism which discharges a ball to the lottery mechanism, wherein the discharging mechanism is controlled so that at least one ball is discharged to the lottery mechanism as one lottery unit, and further controlled so that the game body is discharged continuously to repeat the lottery by the lottery unit, as long as a predetermined end condition is not established.
A gaming system including a cascading symbol or tumbling reel game which utilizes zero, one or more upgrades in association with zero, one or more shifting symbols. Upon an occurrence of an upgrade event, the gaming system upgrades one or more aspects or attributes of one or more games played. In certain embodiments, such upgrades pertain to upgrading one or more symbols displayed at one or more symbol display positions of one or more symbol display position grids. In certain other embodiments, such upgrades pertain to upgrading the award evaluation of one or more symbols displayed at one or more symbol display positions of one or more symbol display position grids. In certain other embodiments, such upgrades pertain to upgrading one or more attributes or features of one or more bonus or secondary games which are subsequently triggered.
A system for authenticating a user with a mobile device comprising a memory storing instructions, and a processor in communication with a network. The processor may be configured to execute the stored instructions to receive, from a mobile device, an authentication request; obtain, from a database, a permanent identifier associated with a transaction card; generate a temporary identifier associated with the transaction card; generate an expected value by encrypting the permanent identifier and the temporary identifier; verify the expected value against an encrypted value received from the mobile device; and transmit an authorization command to the mobile device.
An automatic opening/closing door 10 has an opening/closing portion 11 located at a lower side and a storage portion 12 located at an upper side. The opening/closing portion 11 has vertically arranged guide rails 14, 14 having a U-shaped cross section for guiding both ends of a roll-type shutter 13 in the width direction. The shutter 13 is slidable in the vertical direction without being detached from the guide rails 14, 14. When the shutter motor 15 is rotated in a predetermined direction, the shutter 13 located between the guide rails 14, 14 is wound up and the opening/closing portion 11 is opened. When the shutter motor 15 is rotated in a reverse direction, the shutter 13 is fed between the guide rails 14, 14 and the opening/closing portion 11 is closed. A controller 24 performs a predetermined guiding according to the approaching of the small-sized flying object.
A network of collection, charging and distribution machines collects, charges and distributes portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Vehicle diagnostic data of a vehicle using the portable electrical energy storage device is stored on a diagnostic data storage system of the portable electrical energy storage device during use of a respective portable electrical energy storage device by a respective vehicle. Once the user places the portable electrical energy storage device in the collection, charging and distribution machine, or comes within wireless communications range of a collection, charging and distribution machine, a connection is established between the collection, charging and distribution machine and the portable electrical energy storage device. The collection, charging and distribution machine then reads vehicle diagnostic data stored on the diagnostic data storage system of the portable electrical energy storage device and provides information regarding the diagnostic data.
A method for estimating a remaining useful life of an air filter. The method includes determining, at a controller of a machine, a delta pressure of the air filter in the machine based on an input from a plurality of sensors. The method includes determining a percent plugged of the filter based upon a non-linear relationship between the delta pressure and the percent plugged of the air filter. The method includes estimating the remaining useful life of the filter based upon the percent plugged.
Methods and systems for providing enhanced augmented reality features and enhancements are disclosed such as an AR support system (100) using lighting units (LU1) in a lighting system (100) to improve performance of augmented reality devices (20). The lighting system (100) may also take advantage of features of the augmented reality devices (20) to improve the safety and performance of the lighting system (100). The lighting units (LU1) include sensors and communication capabilities that detect situations as to when the augmented device would need to be assisted by the lighting network. Finally a method to provide assistance information to the augmented reality device while optimizing energy savings is also described.
A computer-implemented method for performing window-leveling of volumetric ray tracing includes a computer system retrieving a quad-tree data structure organizing a plurality of light paths associated with a volume rendered using a transfer function and one or more window level values. The computer system also receives a user selection of at least one of a new transfer function or new window level values. The volume is rendered by the computer system with the new transfer function or the new window level values using the quad-tree data structure. Then, the computer system synthesizes an image by adding contributions from all of the plurality of light paths according to the quad-tree data structure.
For a given texture address, a texture sampler fetches and reduces texture data with a filter accumulator suitable for providing a weighted average over a variety of filter footprints. A multi-mode texture sampler is configurable to provide both a wide variety of footprints in either a separable or non-separable filter modes and allow for a filter footprint significantly wider than the bi-linear (2×2 texel) footprint. In embodiments, sub-sample addresses are generated by the texture sampler logic to accommodate a desired footprint. The sub-sample addresses may be generated and sequenced by multi-texel units, such as 2×2 texel quads, for efficient filtering. In embodiments, filter coefficients are cached from coefficient tables stored in memory.
Embodiments provide for an apparatus including one or more processors having logic to enumerate a directed path through nodes of a directed acyclic graph, the logic to determine a key for a node and a path identifier for a directed path between nodes of the directed acyclic graph.
A method and system for creating a transition between a first scene and a second scene on a computer system display, simulating motion. The method includes determining a transformation that maps the first scene into the second scene. Motion between the scenes is simulated by displaying transitional images that include a transitional scene based on a transitional object in the first scene and in the second scene. The rendering of the transitional object evolves according to specified transitional parameters as the transitional images are displayed. A viewer receives a sense of the connectedness of the scenes from the transitional images. Virtual tours of broad areas, such as cityscapes, can be created using inter-scene transitions among a complex network of pairs of scenes.
This disclosure relates to methods, non-transitory computer readable media, and systems that use a motion synthesis neural network with a forward kinematics layer to generate a motion sequence for a target skeleton based on an initial motion sequence for an initial skeleton. In certain embodiments, the methods, non-transitory computer readable media, and systems use a motion synthesis neural network comprising an encoder recurrent neural network, a decoder recurrent neural network, and a forward kinematics layer to retarget motion sequences. To train the motion synthesis neural network to retarget such motion sequences, in some implementations, the disclosed methods, non-transitory computer readable media, and systems modify parameters of the motion synthesis neural network based on one or both of an adversarial loss and a cycle consistency loss.
Images of user drawn virtual characters, virtual objects, or virtual scenes may be used in providing display of animations. The animations may be displayed over other images or in a virtual world of video game play.
A method and system for displaying a dynamic mosaic of media files, the method comprising: receiving media files, determining a fill direction, constructing a layout, determining an edge set from the media files previously placed on the layout, determining a trailing edge, and adjacent edges, constructing a set of closed rectangles an open rectangle from the trailing edge and adjacent edges, providing a first set of frames by iteratively attempting to fill up to one closed rectangle from the set of closed rectangles, providing a second set of frames by filling the open rectangle by placing one searched media file in the open rectangle if no closed rectangle in the set of closed rectangles can be filled, and inserting one of the first set of frames and the second set of frames into a current layout before updating a current edge set based on the inserted frames.
[Object] To provide an information processing system capable of transmitting a message with a state of a user at the time of inputting the message, to another user. [Solution] The information processing system includes: a message acquisition unit configured to acquire messages input by users; a related information acquisition unit configured to use an imaging device and acquire information related to the user who has input the message; and a control unit configured to control information processing to transmit the input message on the basis of the information related to the user.
A method and a device for fine adjustment of the reconstruction plane of a digital combination image from individual images of a digital radiology system. The device includes an interface for providing individual images of an object. The individual images have overlapping regions with one another. A distance controller, with which the distance A of the individual images can be changed. A processing unit calculates a current combination image from the individual images. The individual images are each shifted by the distance A in relation to one another. A display unit displays the current combination image from the individual images. There is also described an image evaluation system and/or digital radiology system which includes the device.
A method for determining a surrogate respiratory signal for four-dimensional computed tomography using ultrasound data includes acquiring computed tomography data with a computed tomography imaging system (402), acquiring ultrasound data with an ultrasound probe of an ultrasound imaging system (404) concurrently with acquiring the computed tomography data during one or more respiratory cycles, wherein the ultrasound probe is aligned to acquire an image of a diaphragm of a subject, synchronizing the acquired computed tomography data and the acquired ultrasound data, and determining a surrogate respiratory signal from the acquired ultrasound data.
Embodiments are generally directed to compression in machine learning and deep learning processing. An embodiment of an apparatus for compression of untyped data includes a graphical processing unit (GPU) including a data compression pipeline, the data compression pipeline including a data port coupled with one or more shader cores, wherein the data port is to allow transfer of untyped data without format conversion, and a 3D compression/decompression unit to provide for compression of untyped data to be stored to a memory subsystem and decompression of untyped data from the memory subsystem.
Provided is an apparatus for generating an around view. The apparatus includes a capture unit configured to capture images in front of, behind, to the left of, and to the right of a vehicle using cameras, a mask generation unit configured to set a region ranging a predetermined distance from the vehicle in the captured image as a mask region, a feature point extraction unit configured to extract ground feature points from the mask region of each of the captured images; a camera attitude angle estimation unit configured to generate a rotation matrix including a rotation angle of the camera using the extracted feature points; and an around view generation unit configured to rotationally convert the captured images to a top-view image using the rotation matrix.
Continuing a sequence of lensless light-field imaging camera patents beginning 1999, the present invention adds light-use efficiency, predictive-model design, distance-parameterized interpolation, computational efficiency, arbitrary shaped surface-of-focus, angular diversity/redundancy, distributed image sensing, plasmon surface propagation, and other fundamentally enabling features. Embodiments can be fabricated entirely by printing, transparent/semi-transparent, layered, of arbitrary size/curvature, flexible/bendable, emit light, focus and self-illuminate at zero-separation distance between (planar or curved) sensing and observed surfaces, robust against damage/occultation, implement color sensing without use of filters or diffraction, overlay on provided surfaces, provided color and enhanced multi-wavelength color sensing, wavelength-selective imaging of near-infrared/near-ultraviolet, and comprise many other fundamentally enabling features. Embodiments can be thinner, larger/smaller, more light-use efficient, and higher-performance than recently-popularized coded aperture imaging cameras. Vast ranges of diverse previously-impossible applications are enabled: credit-card cameras/phones, in-body monitoring of healing/disease, advanced biomarker analysis systems, perfect eye-contact video conferencing, seeing fabrics/skin/housings, and manufacturing-monitoring, wear-monitoring, and machine vision capabilities.
Provided is an information processing device including an acquisition unit that acquires a first captured image, a second captured image, and a distance to a subject, and a derivation unit that derives an imaging position distance which is a distance between the first imaging position and the second imaging position, on the basis of a plurality of pixel coordinates for specifying a plurality of pixels of more than three pixels which are present in the same planar region as an emission position irradiated with the directional light beam on the real space and correspond to the position on the real space in each of the first captured image and the second captured image which are acquired by the acquisition unit, emission position coordinates which are derived on the basis of the distance acquired by the acquisition unit, a focal length of an imaging lens, and dimensions of imaging pixels.
A method includes combining a plurality of different types of spectral images into a first single blended image based on a first blend point of a first spectral image data blend map. The first blend point includes a first set of weight values. The first set of weight values includes a weight value for each of the plurality of different types of spectral images. The plurality of different types of spectral images is combined based on the first set of weight values. The method further comprising displaying the first single blended image via a display device.
An apparatus, such as a head mounted device (HMD), includes one or more processors configured to implement a graphics pipeline that renders pixels in window space with a nonuniform pixel spacing. The apparatus also includes a first distortion function that maps the non-uniformly spaced pixels in window space to uniformly spaced pixels in raster space. The apparatus further includes a scan converter configured to sample the pixels in window space through the first distortion function. The scan converter is configured to render display pixels used to generate an image for display to a user based on the uniformly spaced pixels in raster space. In some cases, the pixels in the window space are rendered such that a pixel density per subtended area is constant across the user's field of view.
Implementations of the disclosure describe shortcodes for automating application processes. In one implementation, a shortcode, sent by a client computing device, is received by a server computing device. A listing of shortcodes is referenced with the received shortcode. A match between the shortcode and another shortcode maintained in the listing is identified. A list of actions and content is identified. The list of actions and the content are transmitted to the client computing device. The list of actions include computer-executable instructions to: cause the client computing device to instantiate a process to generate an order request form using the content without user intervention and cause the client computing device to display a graphical representation of the order request form to a user. The order request form is received by the server computing device and a service, based on the order request form, is provided to the client computing device.
Configuring well settings may include determining schedules over a mid-term horizon for well settings for all or a subset of wells in an oil field. The schedule may be generated so that a performance metric for the considered horizon is maximized. An economic metric, for example, a net present value, and production metrics, for example, cumulative oil production, are considered. Minimum acceptable short-term and long-term metrics, for example, short-term and long-term cumulative field oil production, may be included as target/constraints.
A method, system, and non-transitory computer readable medium for removing noise ngrams from transaction records. The method may include obtaining noise ngrams; ordering the noise ngrams based on frequency of occurrence; discarding a portion of the noise ngrams below a frequency threshold to obtain a higher frequency subset of the noise ngrams; obtaining a transaction record of interest; and identifying a portion of the higher frequency subset within the transaction record of interest. Identifying the portion of the higher frequency subset may include constructing a regular expression based on the higher frequency subset; constructing a finite state machine based on the regular expression; providing the transaction record of interest as an input to the finite state machine; and executing the finite state machine. The method may also include removing, based on the identification, the portion of the higher frequency subset from the transaction record of interest.
The present invention is in the field of computer systems and processes for managing real and personal property. One aspect of the invention is directed to capturing history of a (real) property, which may include a description of the property, the personal property located on the real property, the projects and maintenance performed or to be performed on the property and their impact on the owner's tax basis in the property. Another aspect of invention allows for sharing of this history with an online community and for transferring the history (or portions thereof) on sale to a buyer.
A method for fulfilling a plurality of orders for goods at a provider location comprises obtaining an arrival sequence estimate for each of a plurality of users indicating the sequence in which the users are expected to arrive, and organizing completed orders according to the arrival sequence estimate. The arrival sequence estimate may be obtained by ordering users according to their respective radial distances from a target, and may also be used to schedule processing of the orders. Alternatively, arrival estimates for when each of the users is expected to arrive may be used to schedule processing of the orders. A dynamic arrival estimate may be obtained based on an expected travel path toward the destination during a first trip portion comprising travel within a constrained travel path network, and based on radial distance from the destination during a second trip portion subsequent to the first trip portion.
Systems and methods described herein relate to processing of information, data and transactions involving content and/or experiences. According to one exemplary implementation, an illustrative method of computerized information processing may involve handling and/or processing data regarding a product, the product comprising an experience, a physical product, and/or a digital product.
A search device includes a suggestion word presentation unit that presents a suggestion word based on the presentation priority by acquiring a suggestion word according to an input search string and a presentation priority from a suggestion word database, the suggestion word database storing the suggestion word and the presentation priority of the suggestion word associated to be searched by the input search string, a time information management unit that calculates time difference between a time when a search is performed and a time when a predetermined purchase operation or purchase preliminary operation is performed on a product which is related to the search and a priority management unit that updates the presentation priority stored in the suggestion word database to raise a presentation priority, which is associated with a suggestion word used for a search, higher as the time difference is smaller.
Systems and methods for providing medical information are provided in which a medical bill and line items summarized by the bill are received from a care provider. A revenue code in the bill and a subset of line items associated with it is identified. Respective line items are matched to corresponding generic description codes using a lookup table, thereby identifying generic codes for the line items. The generic codes are used to determine whether each line item is validly associated with the revenue code. A median charge for each line item is calculated based on historical charges by medical care providers in a relevant geographic region. A report is provided that provides, for each line item, the actual charge for the item from the bill, the median charge for the line item, and any flag indicating that the line item is potentially not validly associated with the corresponding revenue code.
A system for navigating a shopper in a store comprises a mobile device application that is stored at and executed by a mobile computing device; an electronic device in communication with the mobile device application, wherein at least one of the mobile device application and the electronic device receives location data for determining directions and a proximity to an item of interest and processes a predetermined feedback pattern for use by the at least one of the electronic device and the mobile device application and generated according to an established location of the at least one of the mobile electronic device and the electronic device, and wherein the feedback pattern is constructed and arranged to provide an indicator of both a direction to the item and a proximity from the item; and a store navigation system that provides instructions for generating the feedback pattern.
A method can include receiving a URL via an interface of a computing system responsive to activation of an Internet link by a remote user device wherein the Internet link is associated with a webpage ad for an item where the URL comprises user device data and ad data; based at least in part on the user device data, via the computing system, determining a geolocation of the user device; based at least in part on the ad data, via the computing system, determining information about the item; based at least in part on the geolocation of the user device and the information about the item, via the computing system, generating search results; and via the computing system, communicating the generated search results to the user device.
A system and/or method may be provided for providing a financing offer to the user based on a user's browsing session. An example method includes monitoring a browsing session of a user. The method also includes detecting, based on monitoring the browsing session, an action indicating that the user will purchase a product from a merchant during the browsing session. The method further includes providing, based on the action, the user with a user selectable option to accept a financing offer for the purchase of the product. The financing offer is associated with a lender and specifies a set of offer terms. The method also includes in response to a determination that the user has accepted the financing offer, debiting a lender account associated with the lender, crediting a merchant account associated with the merchant, and establishing an agreement of the financing offer between the user and lender.
A system and method provides for the use of a proprietary platform to predict impressions and to predict and design ad campaigns. Specifically, a proprietary programmatic advertisement platform correlates television programming asset sources with actual viewing behavior of broadcasts associated with the television programming assets and ad content associated with the ad campaign. The correlation produces a predicted performance value used to generate an ad campaign. For instance, the invention enables television programming asset sources and viewership information providers to communicate with the programmatic advertisement platform in a way that adds value to or otherwise facilitates the valuation of the television programming asset sources in context of the particular ad. Thus, the programmatic advertisement platform delivers improved performance and lower effective cost of television ad campaigns by using automation for simplification and advanced targeting algorithms to reach desired audiences more efficiently.
Systems, apparatus, and methods for providing promotion sharing between consumers are discussed herein. Some embodiments may include a system including circuitry configured to generate an incentive token for a promotion of a merchant. The incentive token may be associated with a first consumer account and provided to a first consumer device associated with the first consumer account for sharing with other consumers. Upon receiving the incentive token form a second consumer device associated with a second consumer account, the circuitry may be configured to enable the second consumer account to receive an incentive value of the incentive token if various conditions are satisfied. For example, the second consumer may be asked to purchase the promotion, create a new consumer account, or the like.
An aspect of this invention is a method that includes monitoring sensors to collect information for a transportation route, and generating a graph from the collected information where the graph includes a plurality of nodes, each node representing a stop on the at least one transportation route. Each of respective nodes is associated with a corresponding transportation stop density and a corresponding passenger leaving rate. The corresponding transportation stop density is compared with at least one predetermined density threshold and the corresponding passenger leaving rate is compared with at least one predetermined leaving rate threshold to determine a level of dissatisfaction for each of the respective nodes. A tangible output is generated that identifies a level of user dissatisfaction for each of the plurality of nodes.
Disclosed herein is a method and system to establish a secure communication channel between a payment object reader and a payment terminal For this, the server determines whether a payment terminal has associated with an attestation ticket. The method further includes determining, whether to approve or deny the request for establishing the secure communication channel between the payment object reader and the payment terminal based on the attestation ticket. If the determination yields that the request has been approved, further generating a session approval interrupt having one or more session approval conditions; and sending the session approval interrupt to the payment terminal, where the session approval interrupt causes a secure communication channel to be established between the payment object reader and the payment terminal.
A system for provisioning credentials onto an electronic device is provided. The system may include a payment network subsystem, a service provider subsystem, and one or more user devices that can be used to perform mobile transactions at a merchant terminal. The user device may communicate with the service provider subsystem in order to obtained commerce credentials from the payment network subsystem. The user device may include a secure element and a corresponding trusted processor. The trusted processor may generate a random authorization number and inject that number into the secure element. Mobile payments should only be completed if the random authorization number on the secure element matches the random authorization number at the trusted processor. The trusted processor may be configured to efface the previous random authorization number and generate a new random authorization number when detecting a potential change in ownership at the user device.
Methods, systems, and computer readable media for utilizing and provisioning an aggregated soft card are disclosed. One method includes receiving a request for an aggregated soft card from a mobile device, wherein the aggregated soft card includes a primary component soft card and at least one secondary component soft card. The method also includes requesting component soft card data associated with each of the primary component soft card and the at least one secondary component soft card from a plurality of issuing system servers. The method further includes generating aggregated soft card data by establishing a link among the component soft card data received from the plurality of issuing system servers and sending the aggregated soft card data to the mobile device.
Methods and systems are disclosed for determining a wallet element for a transaction from among plurality of elements in a mobile wallet application operating on a mobile device. The mobile device, can for example, receive data from a contactless terminal that includes a transaction type such as a payment type or non-payment type transaction. Based on the transaction type and element-selection data such as configuration preferences, usage history or device-specific information, one or more mobile wallet element(s) from among the plurality of mobile wallet elements in the mobile wallet can be determined. The contactless terminal can then be sent wallet element data associated with the particular mobile wallet element.
The purpose of the present invention is to transfer value, the balance of which is managed by a server, to a terminal that does not have online connection function. An electronic money server 2 records the balance of a value in a state in which the balance is related to an electronic money card 4 or a portable terminal 5. An off-line payment terminal 7 is not provided with communication network connection function and cannot communicate with the electronic money server 2 directly. On the other hand, the portable terminal 5 can connect to the electronic money server 2 via the Internet 3. Thus, the off-line payment terminal 7 connects to the electronic money server 2 by using the portable terminal 5 as a relay device by using the communication network connection function of the portable terminal 5 at the time of payment. In this way, the electronic money server 2 can connect to the off-line payment terminal 7 and make payment by using the value of the account of the portable terminal 5.
A system and method for remediation, curing concerns, and transferring information associated with declined transactions is disclosed. The present disclosure generally relates to receiving, by an application of a transaction account holder web client, a first passively pushed message, in response to a declined first attempt of a transaction request transmitting, by the transaction account holder web client, a response to the first passively pushed message; receiving, by an application of the transaction account holder web client, a second passively pushed message, in response to the response to the first passively pushed message meeting pre-established criteria; and transmitting, by the transaction account holder web client, a second attempt of the transaction request, wherein the second attempt is authorized.
A system remotely accesses an Automated Teller Machine (ATM) machine by detecting insertion of a customer bank card into the ATM. The insertion of the customer bank card is detected by the ATM. The system initiates a connection to a mobile device upon the detection of the insertion. The system then unlocks the ATM when the mobile device accepts the connection, and unlocks the ATM when a banking transaction has been completed, where the banking transaction completed by a remote user operating the mobile device. The system automatically disconnects the connection to the mobile device, and automatically unlocks the ATM after a predetermined time period has elapsed. The system automatically ejects the customer bank card from the ATM when the ATM is automatically unlocked.
A system and method for controlling the travel environment for a passenger are described, in which passenger data is obtained from an existing source of stored data, the stored data including information on the passenger's itinerary. One or more sensor inputs are received, providing information on the physiological state of the passenger and/or environmental conditions in the vicinity of the passenger. One or more outputs are provided to control the passenger's travel environment based on the passenger data and the one or more sensor inputs. A system and method of dynamic travel event scheduling is also described, in which a dynamic event schedule is generate based on the retrieved data, the dynamic event schedule including at least one event associated with at least one action output.
An inspection management system is provided. The inspection management system includes an inspection data provider that receives inspection data relating to an inspector, one or more devices used to complete an inspection, one or more assets associated with an inspection, an inspection plan, etc. A display of the inspection management system presents one or more graphical user interfaces based upon the inspection data. The graphical user interfaces may facilitate inspection planning, execution, preparation, and/or real-time inspection monitoring.
The present disclosure describes an automated, cognitive based computing system using artificial intelligence (AI) and machine learning algorithms to sense, predict, and infer network conditions, configured to dynamically manage transmission of information between communication nodes. The communication nodes comprise orbital nodes positioned in orbit above earth and terrestrial nodes coupled with earth interconnected via a hybrid mesh network topology. One or more automated, cognitive based physical computing processors, using artificial intelligence (AI) and machine learning algorithms to sense, predict, and infer network conditions, determine a target terrestrial node to receive information initially stored on a first orbital node; determine transmission conditions between the target terrestrial node and the first orbital node based on output signals from sensors; dynamically determine whether transmission conditions between the first orbital node and the target terrestrial node prevent optical transmission of the information directly from the first orbital node to the target terrestrial node; and, responsive to a determination that transmission conditions prevent optical transmission of the information to the target terrestrial node from the first orbital node, automatically transmit the information along an alternate route between the first orbital node and the target terrestrial node, wherein the alternate route includes transmission between some orbital node and an alternative target terrestrial node other than the target terrestrial node.
A system and method for defining and calibrating the inputs to a sequential decision problem using historical data, where the user provides historical data and the system and method forms the historical data (along with other inputs) into at least one of the states, actions, rewards or transitions used in composing and solving the sequential decision problem.
Methods and systems for creating ensembles of hypersurfaces in high-dimensional feature spaces, and to machines and systems relating thereto. More specifically, exemplary aspects of the invention relate to methods and systems for generating supervised hypersurfaces based on user domain expertise, machine learning techniques, or other supervised learning techniques. These supervised hypersurfaces may optionally be combined with unsupervised hypersurfaces derived from unsupervised learning techniques. Lower-dimensional subspaces may be determined by the methods and systems for creating ensembles of hypersurfaces in high-dimensional feature spaces. Data may then be projected onto the lower-dimensional subspaces for use, e.g., in further data discovery, visualization for display, or database access. Also provided are tools, systems, devices, and software implementing the methods, and computers embodying the methods and/or running the software, where the methods, software, and computers utilize various aspects of the present invention relating to analyzing data.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods includes generating a plurality of feature vectors that each model a different portion of an audio waveform, generating a first posterior probability vector for a first feature vector using a first neural network, determining whether one of the scores in the first posterior probability vector satisfies a first threshold value, generating a second posterior probability vector for each subsequent feature vector using a second neural network, wherein the second neural network is trained to identify the same key words and key phrases and includes more inner layer nodes than the first neural network, and determining whether one of the scores in the second posterior probability vector satisfies a second threshold value.
CNN based digital IC for AI contains a number of CNN processing units. A first CNN processing unit contains CNN logic circuits operatively coupling to a memory subsystem, which includes a first one-time-programming (OTP) memory for filter coefficients and a second memory for imagery data. A second CNN processing unit contains CNN logic circuits operatively coupling to a memory subsystem that includes a first memory for filter coefficients, a second memory for imagery data and a third OTP memory for unique data pattern (e.g., security purpose). Either STT-RAM or OST-MRAM can be configured as different memories of the memory subsystem.
In a tracking device, a crescent-shaped printed circuit board partially encircles a battery to minimize a thickness of the tracking device. A speaker and a light-emitting diode emit alerts upon receiving a command of a control apparatus or in response to a motion or a temperature sensed by a sensor. A local network has one hub for tracking a plurality of tracking devices and a wider area network has multiple hubs for more detailed tracking of the plurality of tracking devices. The wide area network tracks the plurality of tracking devices anywhere and stores data of each tracking device including its last known position and its sensor data.
Devices, systems, and methods facilitate enrollment of authenticating biometric data for authenticating an authorized user via a biometric sensor. Included devices transmit power to a sensor-enabled device that does not have an independent power source without transmitting data to or from the device. Data input devices coupled to the biometric sensor enable user input of non-biometric data, such as an activation code, via the biometric sensor. For biometric sensors comprising fingerprint sensors, finger guides position a finger to contact the sensor at a desired orientation. Systems and methods allow for enrollment of one or more authenticating biometric data templates with or without requiring input of non-biometric authentication data, such as an activation code.
A universal integrated circuit card (UICC) smart card is disclosed. The UICC smart card comprises a processor, a non-transitory memory, a call control application stored in the non-transitory memory, and an application stored in the non-transitory memory. The call control application, when executed by the processor, receives dialed digits from a dialer application executing on a mobile communication device, wherein the UICC smart card is communicatively coupled to the mobile communication device and distributes the dialed digits within the UICC smart card. The application, when executed by the processor, receives the dialed digits distributed by the call control application, identifies a short code included in the dialed digits, selects instructions stored in the non-transitory memory based on the short code, and configures the UICC smart card by causing the processor to execute the selected instructions.
The present disclosure is directed toward systems and methods for image patch matching. In particular, the systems and methods described herein sample image patches to identify those image patches that match a target image patch. The systems and methods described herein probabilistically accept image patch proposals as potential matches based on an oracle. The oracle is computationally inexpensive to evaluate but more approximate than similarity heuristics. The systems and methods use the oracle to quickly guide the search to areas of the search space more likely to have a match. Once areas are identified that likely include a match, the systems and methods use a more accurate similarity function to identify patch matches.
A camera system including: an image sensor that is controlled by one or more camera parameters; and a pre-processing circuit adapted to associate weights respectively with cells of a grid, wherein the weights differ from the one or more camera parameters, wherein the cells respectively include a plurality of contiguous picture elements of the image sensor.
A machine learning method for learning how to form bounding boxes, performed by a machine learning apparatus, includes extracting learning images including a target object among a plurality of learning images included in a learning database, generating additional learning images in which the target object is rotated from the learning images including the target object, and updating the learning database using the additional learning images.
A method for computer-aided recognition of a transport container being empty is provided. The method includes capturing image data of a region of the transport container; determining a contour pattern, which represents the transport container, using the image data; determining a deviation variable, which represents a deviation of the contour pattern from at least one reference pattern, wherein the at least one reference pattern represents an empty transport container; and outputting a signal if the deviation variable satisfies a predefined criterion.
Provided is an information processing apparatus including: a detection unit configured to detect a corneal reflection image corresponding to light from a light source reflected at a cornea from a captured image in which an eye irradiated with the light from the light source is imaged. The detection unit estimates a position of a center of an eyeball on the basis of a plurality of time-series captured images each of which is the captured image according to the above, estimates a position of a center of the cornea on the basis of the estimated position of the center of the eyeball, estimates a position of a candidate for the corneal reflection image on the basis of the estimated position of the center of the cornea, and detects the corneal reflection image from the captured image on the basis of the estimated position of the candidate for the corneal reflection image.
A portable terminal 1 includes an information acquisition unit 55, an output control unit 56 and an output unit 20. The information acquisition unit 55 acquires move locus information on a move due to daily behavior of a user and a move due to non-daily behavior. The output control unit 56 controls an output unit 20 such that the output unit 20 outputs the acquired move locus information in a state where it is possible to distinguish the move due to non-daily behavior of the user.
An image processing apparatus includes: a first determination unit that determines whether or not a privacy level indicating a level of difficulty in identifying a person's face included in an image as a face of a specific person satisfies a predetermined condition; and an image capture control unit that performs control to execute a predetermined image-related process, in the case where the first determination unit determines that the privacy level satisfies the predetermined condition.
A fingerprint verification method and a fingerprint verification apparatus performing the fingerprint verification method are disclosed. The fingerprint verification apparatus determines a first similarity between a query fingerprint image and each of registered fingerprint images, selects a target registered fingerprint image group from registered fingerprint image groups based on the first similarity, determines a second similarity between the query fingerprint image and each of registered fingerprint images in the target registered fingerprint image group based on matching relationship information between the registered fingerprint images in the target registered fingerprint image group, and determines whether fingerprint verification of the query fingerprint image is successful based on the second similarity.
A device receives, from a tag reader device of a plurality of tag readers, information associated with a scan of a tag, where each of the plurality of tag readers is configured to read a different type of tag. The device determines, based on the information associated with the scan, a tag reader type associated with the tag reader device, where the plurality of tag readers is associated with a corresponding plurality of tag reader types. The device includes a plurality of parsers associated with the plurality of tag reader types, and identifies a parser, included in the device, associated with the tag reader type associated with the tag reader device. The device determines, using the parser, a tag identifier based on the information associated with the scan. Based on determining that the tag identifier is valid, the device transmits the information associated with the scan to a server.
A system and method handles one or more pumping units in an out-of-balance condition. Sensing equipment monitors operating parameters related to balance of each of the one or more pumping units. Processing equipment determines the out-of-balance condition in at least one of the one or more pumping units based on the monitored operating parameters. A first correction to a counterbalance parameter of the at least one pumping unit can be calculated, such as a new position or weight of the counterbalance, so the out-of-balance condition can be corrected by implementing the new position or weight at the at least one pumping unit. A second correction to a stroke parameter of the at least one pumping unit can be calculated, such as a new stroke rate or pattern, so operation of the pumping unit can be maintained despite the out-of-balance condition.
A function generator provides a first signal unit for the delivery of a first signal at a first output. The function generator provides a second signal unit for the delivery of a second signal at a second output. The function generator provides a calibration unit for the generation of a test signal, wherein the test signal can be supplied to the first signal unit and/or to the second signal unit. A comparison unit is connected downstream of the first signal unit and/or the second signal unit. The comparison unit compares the test signal delivered at the first output and/or at the second output with a calibration signal, wherein the output signal of the comparison unit can be supplied to the calibration unit.
The present disclosure is directed to a flexible counter system for memory protection. In general, a counter system for supporting memory protection operations in a device may be made more efficient utilizing flexible counter structures. A device may comprise a processing module and a memory module. A flexible counter system in the memory module may comprise at least one data line including a plurality of counters. The bit-size of the counters may be reduced and/or varied from existing implementations through an overflow counter that may account for smaller counters entering an overflow state. Counters that utilize the overflow counter may be identified using a bit indicator. In at least one embodiment selectors corresponding to each of the plurality of counters may be able to map particular memory locations to particular counters.
Embodiments of the present invention disclose a method, computer system, and a computer program product for routing an image file from an imaging device to a storage device via a near-field communication network. The present invention may include receiving a device search signal from the storage device. The present invention may include sending a search signal response to the storage device. The present invention may include receiving an encrypted password from the storage device. The present invention may include decrypting the received encrypted password. The present invention may include setting the imaging device to an exclusive external storage mode. The present invention may include generating an image file using a sensor. The present invention may include encrypting the image file using the decrypted password. The present invention may include sending the encrypted image file to the storage device for storage.
Various aspects of this disclosure provide a method of encrypting data in a network system. The method may include generating within a trusted network of the network system an associated private key based on an attribute associated with an user, a homomorphically encrypted associated private key based on the associated private key via homomorphic encryption, and a homomorphic key pair. The method may also include transmitting the homomorphically encrypted associated private key from the trusted network to a non-trusted network of the network system. The method may further include generating within the trusted network encrypted data based on said data, and a homomorphically and attribute based encrypted control key. The method may further include transmitting the encrypted data, and the homomorphically and attribute based encrypted control key, from the trusted network to the non-trusted network.
A leakage prevention apparatus stores an assumed use permission range, stores an information asset caused to be in an unavailable state by encryption, stores an information asset caused to be in an available state by decryption, and stores an information asset caused to be in a leakage-concerned state. When use of an information asset in the unavailable state is requested by an application corresponding to the use permission range, the information asset is decrypted to cause the information asset to be in the available state. When the use of the information asset in the available state by the application ends, the information asset is encrypted to cause the information asset to be in the unavailable state. When use of an information asset in the unavailable state is requested by an application not corresponding to the use permission range, the information asset is caused to be in the leakage-concerned state.
Approaches to deactivating evasive malware. In an approach, a computer system installs an imitating resource in the computer system and the imitating resource creates an imitating environment of malware analysis, wherein the imitating resource causes the evasive malware to respond to the imitating environment of the malware analysis as to a real environment of the malware analysis. In the imitating environment of malware analysis, the evasive malware determines not to perform malicious behavior. In another approach, a computer system intercepts a call from the evasive malware to a resource on the computer system and returns a virtual resource to the call, wherein in the virtual resource one or more values of the resource on the computer system are modified.
There is a computer program product and computer system that includes program instructions programmed to establish a security container describing a workload and a set of resources in a software-defined environment, the security container including a set of sub-containers that are self-describing sub-containers having associated metadata describing content of a respectively corresponding sub-container, each sub-container of the set of sub-containers respectively corresponds to a resource-divisible portion of the workload, the set of resources being required by the workload, wherein a sub-container of the set of sub-containers is an operating system sub-container; monitor the workload and the set of resources for security events; and responsive to identifying a security event, adjust isolation mechanisms provided by the plurality of sub-containers at various layers of a stack. The set of sub-containers represents an end-to-end run time environment for processing the workload using the set of resources.
A computer system and method for authenticating a user device associated with a user during the process of logging into a server. The server can generate input requests each of which is valid only during a defined time period, and displays said input requests in succession in a login screen. The user device reads in the input request displayed at the time of the login and calculates a response by using said input request, the password of the user device, and the current time. The user device transmits the calculated response to the login screen and the response is transmitted by the login screen to the server. The server confirms the authentication when the response calculated by the server matches the response transmitted by the user device.
A method of authorizing a limited use intravascular device can include determining if the intravascular device is in communication with a clinical system; determining if the intravascular device is authorized for clinical operation without providing the clinical system access to intravascular device data stored on the intravascular device; and providing an authorization signal to the clinical system. An intravascular device can include a flexible elongate member including a sensing component at a distal portion and a connector at a proximal portion, the connector including: a memory component configured to store a parameter value; a processing component; and a charge storage component configured to power the memory component and/or the processing component; wherein the processing component is configured to determine if the flexible elongate member is authorized for clinical operation using the parameter value without providing the parameter value to a clinical system.
A method and/or computer system generates a three-dimensional image of a fingerprint. One or more sensors detect a first user's finger being pressed against a first fingerprint scanner, where the first user's finger has a first user's fingerprint that comprises fingerprint ridges that form fingerprint grooves. A light source on a rotating platform transmits offset light against the first user's finger as the light source rotates on the rotating platform. A camera captures shadow images of shadows in the fingerprint grooves. One or more processors receive and analyze the shadow images in order to determine a shape and depth of the fingerprint grooves. The processor(s) generate a first digital fingerprint file that represents the shape and depth of the fingerprint grooves, and store the first digital fingerprint file for use in future biometric verification of the first user.
A method of verifying an input biometric identifier against a reference biometric identifier is disclosed in this specification. The method comprises evaluating the input biometric identifier relative to a group (the ‘cohort’) to improve verification accuracy. Up to three matching scores are used to determine a verification probability for the input biometric identifier. The three matching scores measure the similarity of the input biometric identifier to the biometric identifiers of the cohort, the similarity of the reference biometric identifier to the biometric identifiers of the cohort and the similarity of the input biometric identifier to the reference biometric identifier.
A tablet dispenser may include a body having a base for resting on an underlying foundation in use. The body may include a tablet drop channel that extends in a direction at an angle (β) relative a base plane formed by the base, and a support structure for accommodating at least two tablet cartridge units may be arranged one above the other in relation to the base. Each tablet cartridge unit may have an opening allowing a tablet from the associated tablet cartridge unit to be released into the tablet drop channel via gravitational force, whereby each tablet cartridge unit is inclined at an angle (α) relative the base plane.
A method of preventing healthcare fraud-waste-abuse uses artificial intelligence machines to limit financial losses. Healthcare payment request claims are analyzed by predictive models and their behavioral details are compared to running profiles unique to each healthcare provider submitting the claims. A decision results that the instant healthcare payment request claim is or is not fraudulent-wasteful-abusive. If it is, a second analysis of a group behavioral in which the healthcare provider is clustered using unsupervised learning algorithms and compared to a running profile unique to each group of healthcare providers submitting the claims. An overriding decision results if the instant healthcare payment request claim is or is not fraudulent-wasteful-abusive according to group behavior.
In an approach for generating a file, a computer generates a modified layout for an integrated circuit. The computer receives a draft layout for an integrated circuit. The computer identifies a resonator, wherein the resonator comprises a capacitor connected to ground and an inductor connected to a clock grid. The computer creates alternative resonator wiring of the received draft layout associated with the identified resonator. The computer generates a modified draft layout based on the created alternative resonator wiring for the integrated circuit. The computer causes manufacture of an integrated circuit based on the generated modified draft layout.
A method, apparatus and product for hard error simulation and usage thereof. The method comprises obtaining a design of a circuit, which comprises one or more monitoring signals for identifying errors and one or more critical nodes; obtaining a trace of a run of a test of the circuit; and obtaining a hard error fault on a node. The method comprises determining a hard-error test coverage for the hard error fault, wherein the hard-error test coverage is indicative of whether or not the one or more monitoring signals identifies the hard error fault during an execution of the test, and wherein said determining comprises: simulating the execution of the circuit together with the hard error fault and noting whether or not any one or more of the one or more monitoring signals has detected the hard error fault. An indication of the hard-error test coverage may be outputted.
The present disclosure relates to a method for electronic design verification. Embodiments may include receiving, using at least one processor, an electronic design and automatically identifying one or more code coverage points from a netlist of an original model associated with the electronic design. Embodiments may include receiving a property and one or more elements, each of the one or more elements corresponding to one of the one or more code coverage points. Embodiments may further include performing model checking based upon, at least in part, the property and the one or more elements. Embodiments may also include verifying the property and generating an unsatisfiability core based upon, at least in part, the one or more elements.
A method for obtaining a relation between a winding state and a leakage reactance parameter of a transformer by using simulation software is provided. The method includes: establishing a simulation transformer based on a size of a physical transformer; setting parameters of the simulation transformer, setting a winding of the simulation transformer in a predetermined winding state; obtaining a predetermined number of values of a leakage reactance parameter of the simulation transformer in the winding state; and performing statistics on all the values to obtain a value range of the leakage reactance parameter in a case that the winding is in the winding state. The value range is used as a value range of a leakage reactance parameter of the physical transformer in a case that a winding of the physical transformer is in the winding state.
A communication simulating system includes: a communication recording device that records, into a vehicle condition database, a vehicle condition including a step, a place and a vehicle stringed together, vehicle state information that has been input as communication content between a vehicle electric equipment system and a vehicle communication apparatus in a step performed at a predetermined place; a vehicle state information acquiring device that acquires vehicle state information from the vehicle condition database in accordance with a selected vehicle condition; a storage unit that stores communication definition files specifying the respective ones of the same processes as the communication processes executed by a plurality of ECUs included in the vehicle electric equipment system; and a communication control device that communicates with a vehicle communication apparatus in accordance with the communication process and the vehicle state information.
A natural language processing system identifies command elements in a text natural language command and, for each command element, accesses a playlist access matrix and identifies any playlist pointer pairs associated therein with that command element. The natural language processing system then identifies whether a first playlist pointer element in any of those playlist pointer pairs indicates a current playlist pointer best match and, if so, updates a playlist entry identifier with a second playlist pointer element in the playlist pointer pair that includes that first playlist pointer element. When the natural language processing system determines that all of the command elements have been considered, it uses the playlist entry identifier to identify a computing language command in a command playlist, and executes the computing language command on a target element in the text natural language command based on an action element in the text natural language command.
Provided are systems and methods for creating custom dialog system engines. The system comprises a dialog system interface installed on a first server or a user device and a platform deployed on a second server. The platform is configured to receive dialog system entities and intents associated with a developer profile and associate the dialog system entities with the dialog system intents to form a custom dialog system engine associated with the dialog system interface. The web platform receives a user request from the dialog system interface, activates the custom dialog system engine based on identification, and retrieves the dialog system entities and intents. The user request is processed by applying the dialog system entities and intents to generate a response to the user request. The response is sent to the dialog system interface.
Described herein are systems, methods, and techniques by which a processing unit can build an end-to-end dialogue agent model for end-to-end learning of dialogue agents for information access and apply the end-to-end dialogue agent model with soft attention over knowledge base entries to make the dialogue system differentiable. In various examples the processing unit can apply the end-to-end dialogue agent model to a source of input, fill slots for output from the knowledge base entries, induce a posterior distribution over the entities in a knowledge base or induce a posterior distribution of a target of the requesting user over entities from a knowledge base, develop an end-to-end differentiable model of a dialogue agent, use supervised and/or imitation learning to initialize network parameters, calculate a modified version of an episodic algorithm. e.g., the REINFORCE algorithm, for training an end-to-end differentiable model based on user feedback.
The present application discloses an information extraction method. The method includes extracting a plurality of candidate entities and a plurality of candidate attributes from a target corpus based on a plurality of entity seeds of one or more target types in an entity seeds set; establishing a plurality of correlations between the plurality of candidate attributes and a plurality of entities including the plurality of candidate entities and the plurality of entity seeds; and selecting one or more target entities from the plurality of entities and one or more target attributes from the plurality of candidate attributes based on the plurality of correlations.
Natural language processing of raw text data for optimal sentence boundary placement. Raw text is extracted from a document and subject to cleaning. The extracted raw text is examined to identify preliminary sentence boundaries, which are used to identify potential sentences in the raw text. One or more potential sentences are assigned a well-formedness score. A value of the score correlates to whether the potential sentence is a truncated/ill-formed sentence or a well-formed sentence. One or more preliminary sentence boundaries are optimized depending on the value of the score of the potential sentence(s). Accordingly, the processing herein is an optimization that creates a sentence boundary optimized output.
A system including first computer memory storing a full data set representable in rows and columns, a second computer memory storing executable instructions, and processors configured to execute the instructions to cause presentation of data of the full data set on a display including columns of data each having data fields, receive user input identifying a column of the data set, determine items to modify in information in the data fields of the identified column, generate and cause display of an indication of a proposed change action to modify the determined items, and in response to a user input indicating a selection of the indication of the proposed change action, update the presentation of the data based on the change action to modify information displayed in the data fields of the identified column of the data, and store a log of the change action.
A user may make a digital item available to other users of a computer network, such as an instant messaging system, a chat environment, or a subscription-based computer network. Examples of digital items that may be shared with other users include digital representations of graphic images, photographs, audio segments, songs, video segments, movies, and text (such as lists of favorites (e.g., a list of favorite books, a list of favorite movies, and a list of favorite places to visit)). On-line presence information is provided to indicate the on-line presence of users with whom a digital item has been shared, may be shared or is being shared. For instance, an indication of the on-line or offline status of a user with whom an item has been shared or is being shared may be presented.
Systems and methods are disclosed for manipulating image annotations. One method includes receiving an image of an individual's anatomy; automatically determining, using a processor, one or more annotations for anatomical features identified in the image of the individual's anatomy; determining a dependency or hierarchy between at least two of the one or more annotations for anatomical features identified in the image of the individual's anatomy; and generating, based on the dependency or hierarchy, a workflow prompting a user to manipulate the one or more annotations for anatomical features identified in the image of the individual's anatomy.
Techniques are provided to enable quick previews of what a modified document would look like. In an implementation, a set of page images are stored. Each page image represents a page of a document, the page having been converted to a page image for a first version of the document to permit the document to be viewed in a viewer program. A command is received to modify the document. The requested modification may include, for example, reordering pages, deleting pages, or extracting pages. A preview is generated for a second version of the document. The preview reflects the modification and uses at least one page image from the set of page images created for the first version of the document. Reusing page images allows the preview to be generated very quickly.
Features are disclosed for dividing content pages into sections, or “tiles,” that can be updated independently of one another, and determining the processing burdens associated with updating and managing such divided content pages, the likelihood that portions of the content pages will change, etc. The processing burdens may be based on an analysis of how long it takes to update the display of the tiles or other sections of the content page, the computer memory used to update the display, the processor cycles used to update the display, etc. A browser application or some other module can use the determined processing burdens and/or change likelihoods to define a new or updated layout for dividing the content pages into tiles. The browser application may also cache, for future use, cost information and/or information regarding the new or updated layout for dividing the content pages into tiles.
This patent application discloses to a method of controlling accessible browser functions of a physical side of a remote or virtual desktop environment, said method comprising steps of: setting up a virtual desktop infrastructure between a physical unit (1) of a user, on said physical side, and a virtual unit (2) assigned to said user, on a virtual or remote side; running a first web browser (31) at the physical unit (1) and a second web browser (41) at the virtual unit (2); establishing a WebRTC data channel (68) between said first and second web browsers (41) running at the physical unit (1) and the virtual unit (2), respectively; and controlling said browser functions of said first web browser (31) running at the physical unit (1) remotely by said virtual unit (2) utilizing said WebRTC data channel (68) established between the physical unit (1) and the virtual unit (2). The disclosure also covers a corresponding server and software product.
A system and method for web application navigation control includes updating navigation data models used in navigation constraints with received data from an end-user or system. Without needing a centralized application-specific controller, from a collection of extensible navigation rules associated with each page of a plurality of pages, the extensible navigation rules are automatically selected which depend on changed data values and need re-evaluation. The navigation constraints associated only with the pages potentially changing their ready state to execute from among the plurality of pages in an entire application are evaluated to determine which pages are ready to run based on updated data from the navigation data models. A preferred page to be actually navigated to next is selected from among a set of all available and ready pages by execution of a set of second and separate navigation constraints using results of the navigation constraints of the evaluating step.
In one embodiment, a method detects that a web browser of a user has accessed an annotated webpage. The annotated webpage comprises one or more webpage elements comprising a set of selectable portions. The method detects that a user has utilized a user input system to select a selectable portion of a web-page element. The method identifies the selectable portion of the web-page element. The method generates a list of identifiers based on the identity of the selectable portion. With the list of identifiers, the method searches a database of annotated web-page elements managed by the proxy server system. The method retrieves a set of returned annotated web-page elements from the database. The method assigns a similarity score to each returned annotated web-page element. The similarity score is based on a similarity of the selectable web-page element with a respective returned annotated web-page element. The method ranks each returned web-page elements based the similarity score. The method creates a deck of ranked-returned web-page elements. The method presents the deck of ranked-returned web-page element to the web browser of the user. Each ranked-returned web-page element comprises another set of selectable portions. The method detect that the user has utilized the user input system to select another selectable portion of the ranked-returned web-page element. The method identifies the other selectable portion of the ranked-returned web-page element. The method generates another list of identifiers based on the other selectable portion's identity. The method updates the list of identifiers with the other list of identifiers. The method reassigns a similarity score to each returned annotated web-page element. The method re-ranks each returned web-page elements based the similarity score. The method re-creates the deck of ranked-returned web-page elements.
In an approach to personalizing a news feed, a computing device monitors a user accessing content. The computing device determines a personal knowledge graph for the user based on the accessed content. Responsive to receiving a new piece of content that the user has not accessed, the computing device determines a novelty score for the new piece of content based on the personal knowledge graph. The computing device filters the new piece of content based on the novelty score.
A method and apparatus of a network element that stores a lookup entry in a hardware table of a network element is described. In an exemplary embodiment, the network element receives a notification of a dirty lookup entry to be processed for a hardware table of a network element, where the hardware table includes a plurality of lookup entries. In addition, the network element determines a location for a table modification associated with the dirty lookup entry in the hardware table. Furthermore, the network element performs, with a hardware writer of the network element, the table modification associated with the lookup entry in a non-disruptive manner, where the hardware writer performs the table modification associated with the lookup entry in response to determining that the table modification associated with the lookup entry does not leave one of the plurality of lookup entries inconsistent after the table modification is performed.
Systems and methods are provided for filtering at least one media content catalog based on criteria for a station library to generate a first list of candidate tracks for the station library, combining a similarity score and a popularity score for each track of the first list of candidate tracks to generate a total score for each track of the first list of candidate tracks, generating a list of top ranked tracks for the first genre, and returning the list of top ranked tracks of the first genre as part of the station library.
A computer-implemented system and method provide for mapping a set of strings onto an ontology which may be represented as a graph. The method includes receiving a set of strings, each string denoting a respective object. For each of the strings, a pairwise similarity is computed between the string and each of a set of objects in the ontology. For each of a set of candidate subsets (subgraphs) of the set of objects, a global score is computed, which is a function of the pairwise similarities between the strings and the objects in the subset and a tightness score. The tightness score is computed on the objects in the subset with a submodular function. An optimal subset is identified from the set of candidate subsets based on the global scores. Strings in the set of strings are mapped to the objects in the optimal subset, based on the pairwise similarities.
A data analysis system allows users to interact with distributed data structures stored in-memory using natural language queries. The data analysis system receives a prefix of a natural language query from the user. The data analysis system provides suggestions of terms to the user for adding to the prefix. Accordingly, the data analysis system iteratively receives longer and longer prefixes of the natural language queries until a complete natural language query is received. The data analysis system stores natural language query templates that represent natural language queries associated a particular intent. For example, a natural language query template may represent queries that compare two columns of a dataset. The data analysis system compares an input prefix of natural language with the natural language query templates to determine the suggestions. The data analysis system receives user defined metrics or attributes that can be used in the natural language queries.
An oldest version timestamp is received from a first database. A current commit timestamp is received from a second database configured to asynchronously replicate the first database. The current global commit timestamp corresponds to a commit transaction executed in the first database and subsequently replicated in the second database. A first test query is then issued to the second database including a request for a current timestamp of the second database. A second test query is issued to the primary database requesting records associated with a target update version that has a target timestamp equal to the current snapshot timestamp. A determination is then made that a first return associated with the first test query and a second return associated with the second test query are identical indicating a successful validation. Related apparatus, systems, techniques and articles are also described.
A data replication method and a storage system are provided. The method is applied to a storage system including a first storage device and a second storage device. According to the method, after determining replication information, a first storage system determines a first replication sub-information and a second replication sub-information according to the replication information, where the replication information is used to indicate data that needs to be replicated by the first storage system to a second storage system in a current replication task. Then, the first storage device replicates data to the second storage system according to the second replication sub-information, and the second storage device replicates data to the second storage system according to the second replication sub-information. According to the data replication method, efficiency of replication performed between the first storage system and the second storage system can be improved.
A method, system and computer program product for providing consolidated access to data of a plurality of source databases. Tables of each of the source databases are replicated to a shared accelerator. The source DBMSs are configured to dispatch queries to the accelerator for accelerating query execution. The accelerator is configured such that the replicated tables can only be accessed by the source DBMS having provided said tables for executing a dispatched query. A user can select one of the source DBMSs to act as a consolidated DBMS—C-DBMS. The C-DBMS provides the consolidated access. The user is enabled to select tables managed by another one of the DBMSs. In response to receiving the selection of the tables, the accelerator is re-configuring such that the C-DBMS is granted access also to the copies of the selected tables in the accelerator.
Computer implemented systems and methods for distributing replica chunks are disclosed. Computing nodes in the network are assigned to zones that correspond to functions performed by the nodes in the network. Replica chunks are likewise associated with the zones that are typically used in processing the replica chunks. When the owner of a replica chunk identifies a new node, it distributes to the new node those replica chunks that are associated with a zone that matches the zone associated with the new node. The owner of the replica chunk is further programmed to receive requests from nodes to subscribe to a data chunk. The node replicates the data chunk to those nodes in the network that have subscribed to the data chunk. When a node no longer requires access to a data chunk, the node unsubscribes from receiving the data chunk.
A control apparatus of an automation system, the control apparatus includes a database adapted to store time series data in a historian data source and adapted to store events derived from the time series data based on event detection rules in an event data source, wherein a semantic data or event query received by the control apparatus is mapped to a corresponding data source of the database to retrieve the queried data or event which are contextualized using an ontological context model of the automation system stored in the database and output by control apparatus in a semantic format is provided.
The disclosed embodiments include a method performed by a data intake and query system. The method includes receiving a search query by a search head, defining a search process for applying the search query to indexers, delegating a first portion of the search process to indexers and a second portion of the search process to intermediary node(s) communicatively coupled to the search head and the indexers. The first portion can define a search scope for obtaining partial search results of the indexers and the second portion can define operations for combining the partial search results by the intermediary node(s) to produce a combination of the partial search results. The search head then receives the combination of the partial search results, and outputs final search results for the search query, where the final search results are based on the combination of the partial search results.
The usefulness of a search engine depends on the relevance of the result set it returns. Search problems in a particular domain require an understanding of the user's intent that traditional search methods lack, including a sense of time, domain and situational context, user preferences and the history of previous searches in the domain of interest. In an age in which speaking to technology is becoming the norm and user expectations are skyrocketing, semantic search is more important than ever. The disclosed technology describes systems and methods for implementing natural language search with semantic mapping and classification. The technology further discloses systems and methods for including social search, making it possible for users to include input from friends in search results. The disclosed technology offers a customizable flexible technology designed to be taught about a domain and to be able to systematically adapt to its unique needs.
An information processing apparatus according to the present invention is directed to enabling recognition of omission of a log file in a case where a part of the log file is omitted when the log file of a log collection server is remotely checked, and the information processing apparatus includes a first transmission control unit configured to perform control to transmit log information to a log collection server, a generation unit configured to generate statistic information about transmission of the log information by the first transmission control unit, and a second transmission control unit configured to perform control to transmit the statistic information to the log collection server.
A distributed file storage services (DFSS) that provides low latency (LL) and high throughput (HT) modes for file systems. A HT metadata subsystem (HTMS) may use a distributed transaction system for data and metadata reads and writes for file systems in HT mode. A LL metadata subsystem (LLMS) may process metadata requests for file systems in LL mode. For metadata read requests, the LLMS may locally cache at least some of the file system metadata. For metadata write requests, the LLMS may write entries to a journal and notify the access node after the entries are committed to the journal. Data reads and writes for file systems in LL mode may be handled similarly to data reads and writes for file systems in HT mode. A file system may be converted from LL to HT mode, or from HT to LL mode.
Original data that represents a real-world object or activity and organized along three or more dimensions is received. The original data is represented as a product of several multipliers including a sparse core, such that the sparse core has fewer non-zero values than a tensor representation of the original data, and one or more unitary matrix multipliers. Modified data is generated based on the original data using the multipliers. This includes compressing, or reconstructing missing elements in, the tensor representation of the original data, such that the modified data provides a description of the real-world object or activity that is less complete or more complete, respectively, relative to the original data.
Computer implemented methods and systems directed to a technological improvement in electronic data compression and transmission between two computer systems using semantic analysis are disclosed. The method includes the step of compressing, at a first computer, a plurality of queued artifacts based on one or more network decision variables. The compression includes prioritizing the queued artifacts. The compression further includes determining a first set of artifacts in a set of queued artifacts to transmit and a second set of artifacts in a set of queued artifacts to only send links. The compression further includes replacing unnecessary content in the set of queued artifacts with one or more identifiers. The method further includes the step of transmitting, from the first computer, one or more batches of the compressed data over a network to a second computer.
A system, apparatus, and method for managing data storage and data access with querying data and filtering value ranges using only a constant amount of computer memory in the implementation of bloom filters based on a first consumption of a relation.
Methods, apparatus, systems, and articles of manufacture to enable status change detection in a low power mode of a microcontroller unit are disclosed herein. An example integrated circuit (IC) includes a controller to determine that the IC is to enter a low power mode. The example IC includes a universal serial bus (USB) physical layer integrated circuit including a transceiver and a detector circuit. The transceiver is disabled while in the low power mode. The detector circuit is enabled while in the low power mode. The detector circuit is to determine whether a pinout of a USB receptacle is shorted to ground. The example IC includes a power control module (PCM) to disable the controller when entering the low power mode. Upon receipt of an indication that the ID pinout of the USB receptacle is shorted to the ground, the PCM initiates a boot sequence.
In accordance with an embodiment, a method includes receiving a transmission signal; converting the received transmission signal into a corresponding bus signal by driving an output stage of a transmitter having a plurality of switches, where a switching behavior of the plurality of switches of the output stage is dependent on a parameter set; converting the bus signal into a corresponding reception signal, wherein an edge of the reception signal is delayed by a loop delay relative to a corresponding edge in the transmission signal; determining a measurement value for the loop delay; and altering the parameter set in order to adapt the loop delay.
A device with a physical layer (PHY) core component, a PHY I/O component, a decoupling I/O component, and a decoupling core component, where the PHY core component is adjacent to the PHY I/O component, the PHY I/O component is adjacent to the decoupling I/O component, the decoupling I/O component is adjacent to the decoupling core component and is positioned a first distance away from the PHY core component, and the decoupling core component is adjacent to an edge of the device and is positioned a second distance away from the PHY core component.
In various embodiments, methods and systems are provide for detecting a physical configuration of a device based on sensor data from one or more configuration sensors. The physical configuration includes a position of a first display region of the device with respect to a second display region of the device, where the position is physically adjustable. A configuration profile is selected from a plurality of configuration profiles based on the detected physical configuration of the device. Each configuration profile is a representation of at least one respective physical configuration of the device. An interaction mode corresponding to the selected configuration profile is activated, where the interaction mode includes a set of mode input/output (I/O) features available while the interaction mode is active. Device interfaces of the device are managed using at least some mode I/O features in the set of mode I/O features based on the activating of the interaction mode.
Systems and methods are disclosed method for operating a serial interconnect of a computer system in a time deterministic manner. An exemplary method comprises that a command to be sent over the serial interconnect in a transaction is to be executed at a specific time. A delay period for the command to be sent from a master of the computer system to a slave of the computer system via the serial bus is determined, where the delay period determined based on a length of an arbitration phase of the transaction. The command is then sent to the slave of the computer system via the serial bus after the delay period.
A service acceleration method is disclosed. The method includes: querying acceleration type information and information about an idle acceleration ability that are of the multiple acceleration engines, and forming an accelerator resource pool according to the acceleration type information and the information about the idle acceleration ability; after receiving an acceleration application of a first service processing unit in the multiple service processing units, allocating, from the accelerator resource pool according to a preset allocation granularity, a first idle acceleration ability and a connection number that are corresponding to the first acceleration ability and a first acceleration type; and feeding back a result packet that is obtained after acceleration processing to the first service processing unit. The method and the apparatus that are provided in the present invention resolve a prior-art problem of resource waste caused by inappropriate utilization of accelerator resources.
A system and method for maintaining information of pending operations are described. A buffer uses multiple linked lists implementing a single logical queue for a single requestor. The buffer maintains multiple head pointers and multiple tail pointers for the single requestor. Data entries of the single logical queue are stored in an alternating pattern among the multiple linked lists. During the allocation of buffer entries, the tail pointers are selected in the same alternating manner, and during the deallocation of buffer entries, the multiple head pointers are selected in the same manner.
An apparatus, method, program product, and system are disclosed for evicting pages from memory using a neural network. A state module determines state information related to evicting pages from memory. The state information may be determined by a dedicated hardware snooping device that snoops a system bus for the state information. A learning module determines an identifier for a page in memory to be evicted using a neural network. The neural network may perform machine learning operations on the state information to identify the page in memory to be evicted. An eviction module locates the identified page in memory using the identifier determined by the neural network and evicts the identified page from memory.
A method for coordinating cache and memory reservation in a computerized system includes identifying at least one running application, recognizing the at least one application as a latency-critical application, monitoring information associated with a current cache access rate and a required memory bandwidth of the at least one application, allocating a cache partition, a size of the cache partition corresponds to the cache access rate and the required memory bandwidth of the at least one application, defining a threshold value including a number of cache misses per time unit, determining a reduction of cache misses per time unit, in response to the reduction of cache misses per time unit being above the threshold value, retaining the cache partition, assigning a priority of scheduling memory request including a medium priority level, and assigning a memory channel to the at least one application to avoid memory channel contention.
A power button override allows a persistent memory enabled platform to preserve data in persistent memory before initiating shutdown in a manner that is transparent to the user. The power button override prevents shutdown until all of the volatile cache and any other data in the platform has been flushed to persistent memory.
Disclosed is an improved approach to implement training for memory technologies, where a data valid window is re-determined using boundary information for a new data valid window. The information obtained for the new location of the first edge is used to minimize the computational resources required to identify the location of the second edge. This greatly improves the efficiency of the process to perform the re-training.
Tools and techniques are described to detect possible holes in automated testing of software under development. Full line coverage by tests does not necessarily indicate actual coverage of execution scenarios, e.g., condition coverage, decision coverage, and other kinds of execution scenario coverage may be lacking even when all source code statements are nominally covered. When source code changes are submitted, and corresponding test-sets remain unchanged, users are notified that adequate testing is not assured by the current test-set. Testing assurance code in a development tool chain may flag a pull request, test-set, or source code submission to indicate a lack of testing assurance. In some cases, an assurance-enhanced tool may require that new or different tests be provided with updated source code as a prerequisite for that source code to be accepted for inclusion in a repository or a build, for example.
An improved static program analysis procedure is provided by formulating a set of seeding configurations, and selecting a subset of queries posed by the static program analysis procedure. In response to one or more queries of the subset of queries being answered positively under at least one configuration of the set of seeding configurations, the one or more queries are determined to be valid queries. Each query of the valid queries is evaluated under each configuration of the set of seeding configurations to determine an accuracy score for each seeding configuration. A seeding configuration having a highest accuracy score is selected as a tool configuration to be used with the static program analysis procedure.
A method and associated systems for identifying and correcting suboptimal storage-reclamation processes. A storage-management system uses information received in system-generated storage-reclamation reports to assign each user a set of reclamation scores. Each score identifies how effectively the user has been able to reclaim lost storage at particular times. These scores are organized into user-specific profiles that each consists of a chronological sequence of one user's scores. If a user's profile is “good” (that is, if the user's scores are consistently high) or “improving” (if scores are increasing over time), the system then determines whether that user's reclamation efforts have successfully reduced the amount of reclaimable storage controlled by the user. If not, the system infers that a suboptimal storage-reclamation process interfered with the user's reclamation efforts. The system then undertakes corrective action to identify and resolve the cause of the suboptimal process.
Systems and methods are provided for print verification that reports defective printheads. One embodiment is a Print Verification System (PVS) that includes an interface to receive print data, and an imaging device to obtain image data of printed output of the print data. The PVS also includes a processor to detect a print error on a page by comparing the print data and the image data. The processor determines a lateral distance of a location of the print error with respect to an edge of the page, identifies a print engine that printed the page, determines a lateral offset of the print engine with respect to the edge of the page, identifies a printhead among a plurality of printheads of the print engine that caused the print error based on the lateral distance of the print error and the lateral offset of the print engine.
Various embodiments are provided that enable a controller of a storage device having storage media to perform one or more error recovery operations on the storage media, and to convey, while performing the one or more error recovery operations, a message indicating a status of the one or more error recovery operations to a host processor in communication with the storage device. Storage devices implementing embodiments of the present invention include hard disk drives and solid state disk drives comprising a disk head having a magnetoresistive (MR) element configured to read and write data to and from the storage media, and coupled to an analog/digital (A/D) converter, and the error recovery operations are selected from a list of changing an automatic gain control of the A/D converter, positioning the disk head off-track in order to read the data, and adjusting a bias value of the MR element.
In accordance with implementations of the present disclosure, a backup of live data received by a data forwarder is generated at the data forwarder while the live data is provided to a real-time data pipeline for forwarding from the data forwarder. A first portion of the live data is recovered from the backup to a stale data pipeline of the data forwarder. A request to forward the live data to a destination node is received by the data forwarder. In response to the request data is forwarded to the destination node, where the first portion of the live data from the stale data pipeline is added to a second portion of the live data from the real-time data pipeline in the response based on determining headroom remains to reach an amount of the data identified to include in the response.
Techniques to protect data are disclosed. A backup appliance configuration data associated with a first backup appliance associated with a first virtual machine environment is received at a host site. The backup appliance configuration data is replicated to a remote replication site. The backup appliance configuration data includes data usable at the remote replication site to provide at the remote replication site a replicated backup appliance that is associated with a second virtual machine environment at the remote replication site and is configured to access backup data stored by the first backup appliance and to use said backup data stored by the first backup appliance to recover to hosts at the replication site one or more virtual machines associated with the first virtual machine environment.
Various systems and methods can perform block-level deduplication. For example, one method involves sending a chunk of data to a deduplication server for storage in a deduplicated data store. The chunk of data includes multiple blocks. Subsequent to sending the chunk of data to the deduplication server, the method detects that at least one of the blocks has been modified. In response, the method sends associated information as well as the modified blocks, which include at least one but fewer than all of the blocks in the chunk, to the deduplication server. The associated information identifies a location of the included blocks within the chunk of data. The method can be performed by a computing device implementing a deduplication client.
A method of operating a storage device includes receiving a first logical address from a host, determining whether first metadata stored in a volatile memory of the storage device and associated with the first logical address is corrupted, processing the first metadata as an uncorrectable error when the first metadata is determined to be corrupted, providing an error message to the host indicating that an operation cannot be performed on data associated with the first logical address when the first metadata is processed as the uncorrectable error, after the providing of the error message, receiving a second logical address from the host, determining whether second metadata stored in the volatile memory and associated with the second logical address is corrupted, and performing an operation of accessing the non-volatile memory based on the second metadata, when the second metadata is not determined to be corrupted.
Various implementations disclosed herein provide fault-tolerant enterprise object storage system that can store small objects. In various implementations, the fault-tolerant enterprise object storage system writes a small object into an aggregate object that is distributed across a plurality of storage entities. In some implementations, the small object is at least an order of magnitude smaller than the aggregate object, and the small object is within the same order of magnitude of a block unit addressable within each of the storage entities. In some implementations, based on the small object, the storage system updates the parity data associated with the aggregate object in response to writing the small object into the aggregate object. In various implementations, the storage system updates a processed data end offset indicator that indicates that the parity data for the aggregate object includes valid data up to and including the small object.
A memory device, a memory system, and a method of operating the same. The memory device includes a memory cell array including a plurality of memory cells and a write command determination unit (WCDU) that determines whether a write command input to the memory device is (to be) accompanied a masking signal. The WCDU produces a first control signal if the input write command is (to be) accompanied by a masking signal. A data masking unit combines a portion of read data read from the memory cell array with a corresponding portion of input write data corresponding to the write command and generates modulation data in response to the first control signal. An error correction code (ECC) engine generates parity of the modulation data.
A method for enabling a root cause analysis for an error originating in a content management system, is provided herein. The method comprises storing an identifier and a version number for each digital content item undergoing a change relating to the digital content item, and rendering a web page including the digital content item. The identifier and the version number are invisibly included in the web page. The method also comprises including the identifier and the version number in a request based on the rendered web page including the digital content item, storing fingerprint data relating to the request, creating an error record if during an execution of the request an execution error occurs, and making available the error record, the identifier and the version number of the related digital content item, as well as the related fingerprint data.
Aspects of the disclosure provide a method and an apparatus that perform a background media scan (BGMS) with improved efficiency. In particular, the disclosed BGMS processes can monitor data retention performance of a large capacity solid state drive (SSD) without significantly increasing scanning overhead by scanning only some sample pages of a memory block.
[Object] To sufficiently reduce frequency of error occurrence in memory cells.[Solution] A reading unit reads read data from a memory cell, the read data including an information bit and reversal information for determining whether or not the information bit has been reversed. In addition, an error detection/correction unit detects the presence or absence of an error in the information bit and corrects the error. A data reversing unit reverses the information bit that has the error corrected and the reversal information. Furthermore, a writing unit writes the reversed information bit and the reversed reversal information in the memory cell.
Provided is a life cycle tracking system including a memory and a processor. The memory includes instructions that, when executed by the processor, cause the processor to perform certain operations. For example, the operations can include effecting a change in a first database including data related to a set of components installed on a blowout preventer stack, in response to a drag and drop operation having been performed on a human machine interface. The change can include associating information from a second database to the first database. The second database includes data related to a set of spare components.
A technique for facilitating direct doorbell rings in a virtualized system is provided. A first device is configured to “ring” a “doorbell” of a second device, where both the first and second devices are not a host processor such as a central processing unit and are coupled to an interconnect fabric such as peripheral component interconnect express (“PCIe”). The first device is configured to ring the doorbell of the second device by writing to a doorbell address in a guest physical address space. For security reasons, a check block checks an offset portion of the doorbell address against a set of allowed doorbell addresses for doorbells specified in the guest physical address space, allowing the doorbell to be written if the doorbell is included in the set of allowed doorbell addresses.
In an embodiment, a processor includes a plurality of processing engines (PEs) to execute threads, and a guide unit. The guide unit is to: monitor execution characteristics of the plurality of PEs and the threads; generate a plurality of PE rankings, each PE ranking including the plurality of PEs in a particular order; and store the plurality of PE rankings in a memory to be provided to a scheduler, the scheduler to schedule the threads on the plurality of PEs using the plurality of PE rankings. Other embodiments are described and claimed.
Systems and methods for data storage and retrieval for a computer memory include processing a computational workflow having multiple data-processing steps, generating and storing a first hash value associated with a first step of the data-processing steps based on an input to the first step, generating and storing a second hash value associated with a second step of the data-processing steps based on the generated first hash value, and reconstructing a computational state of the workflow based on the second hash value, and thereby avoid re-execution of a portion of the workflow corresponding to the second hash value.
Large-scale data migration processes are managed using a schedule optimizer implemented in software. The schedule optimizer assigns an available data migration window to each server in an inventory of servers based on a scheduling priority determined for that server. For example, servers that have manually scheduled conversion dates are assigned the highest scheduling priority, and servers that have a migration deadline are assigned the next highest scheduling priority. In addition, servers may grouped and data migration may be scheduled for server groups instead of individual servers.
Examples are disclosed for composing memory resources across devices. In some examples, memory resources associated with executing one or more applications by circuitry at two separate devices may be composed across the two devices. The circuitry may be capable of executing the one or more applications using a two-level memory (2LM) architecture including a near memory and a far memory. In some examples, the near memory may include near memories separately located at the two devices and a far memory located at one of the two devices. The far memory may be used to migrate one or more copies of memory content between the separately located near memories in a manner transparent to an operating system for the first device or the second device. Other examples are described and claimed.
A data processing system with technology to secure a virtual machine control data structure (VMCDS) comprises random access memory (RAM) and a processor in communication with the RAM. The processor comprises virtualization technology that enables the processor to run a virtual machine monitor (VMM) in the data processing system and to run guest software in a virtual machine (VM) that is managed by the VMM. The VM is based at least in part on a VMCDS for the VM. An instruction decoder in the processor recognizes and dispatches a set-mask instruction. The set-mask instruction specifies access restrictions to be imposed on the VMM with respect to the VMCDS of the VM. The processor also comprises a mask enforcer to automatically enforce the access restrictions specified by the set-mask instruction, in response to an attempt by the VMM to access the VMCDS of the VM. Other embodiments are described and claimed.
An application process can be executed based on an initialization instruction, where the application process includes instructions associated with a hook framework. A virtual machine configured to load the hook framework on the virtual machine based on instructions included in the application process can be initiated and the instructions associated with the hook framework can be executed upon initiation of the virtual machine to insert a hook on the virtual machine. A nascent process configured to initiate an additional virtual machine can be initiated based on a request to load an application, where the additional virtual machine is hooked via the hook inserted on the virtual machine.
Concurrent maintenance of an input/output (I/O) adapter backing a virtual network interface connection (VNIC) including receiving, by a hardware management console (HMC), a request to disconnect the I/O adapter from a computing system, wherein the computing system comprises a logical partition and virtual I/O server; instructing, by the HMC over a communications link, the virtual I/O server to deconfigure and remove the server VNIC driver; determining, by the HMC, that a replacement I/O adapter is installed on the computing system; and in response to determining that the replacement I/O adapter is installed on the computing system, instructing, by the HMC over the communications link, the virtual I/O server to add and configure a replacement server VNIC driver.
A method performed by an information handling system, the method including bifurcating, by a processor of the information handling system, an I/O unit (IO unit) of the information handling system into a first root port and a second root port, wherein the first root port comprises a first pre-determined number of first lanes of the IO unit and the second root port comprises the first pre-determined number of second lanes of the IO unit. The method further including discovering, by the processor, a first I/O device (IO device) coupled to the IO unit, wherein the first IO device utilizes a first lane width that is greater than the first pre-determined number of lanes, and in response to discovering the first IO device, bifurcating, by the processor, the IO unit into a third root port, wherein the third root port comprises the first lanes and the second lanes.
According to an exemplary embodiment of the present disclosure, disclosed is a method for seamless application version management in a system including a plurality of application servers. Procedures stored in a computer program for processing the above-mentioned method include: transmitting held application version information to an application management server, receiving an updated version of an application file and version information corresponding to the application file from the application management server; determining that it is possible to perform a service using the updated version of an application by loading the updated version of the application file; transmitting application update readiness information to the application management server when it is determined that it is possible to perform the service using the updated version of the application; and receiving a command to apply the updated version from the application management server.
Example methods and systems to perform distributed upgrade of a component in a virtualized computing environment are disclosed. One method may include processing an upgrade bundle and querying a status file saved on the component to obtain an upgrade progress of the component. In response to a first task identifier indicating a completion of a first task associated with a first upgrade step, the method may include performing a second task and recording a second task identifier of the second task to indicate the completion or failure of the second task in the status file. In response to the first task identifier indicating a failure of the first task, the method may include performing the first task and updating the first task identifier to indicate the completion or failure of the first task in the status file.
In one aspect, a method for executing a web component using a server device will be described. A web component is provided at a client device. The client device also provides a shadow DOM based on the web component. The shadow DOM is synchronized with a shadow DOM cache at a server device. Various implementations relate to methods, server devices, client devices, software development kits and computer readable mediums that are involved in executing a web component at a server device.
Unused instructions and no longer used instructions in a target application binary are determined. The target application binary is rewritten before and after runtime execution of the target application binary to remove the unused and no longer used instructions to reduce binary attack surface area for the runtime execution of the target application binary. Methods, computer systems, and computer program products are disclosed.
Embodiments of the present disclosure relate to techniques for maintaining a state of a distributed system. In particular, certain embodiments relate to identifying a function. Some embodiments relate to, upon determining that the function comprises an annotation indicating that the function is capable of modifying the state of the distributed system, transforming the function to allow the function to generate updates to a state machine.
An information processing apparatus configured to compile a source program in a compiling process, the information processing apparatus includes: a memory; and a processor coupled to the memory and configured to: out of one or more variables included in a source program, identify a variable being available as a constant in the compiling process; add a specifier to the source program, the specifier declaring to handle the identified variable as the constant in the compiling process; and convert the source program to which the specifier is added into an object program.
An improved software optimization tool framework is provided that, when executed, creates software agents that attach themselves to all running instances of a user-specified application and/or process, be it in a single machine or across multiple machines (e.g. in a computer cluster). Once the software agents attach, for each attached application and/or process, the tool can be configured to capture the input and output data of specified target sections of code for the specified application or process. In an embodiment, a software programmer may want to optimize a specific target section of code that may comprise a single function or multiple functions or code portions. Based on pre-identified code sections, the tool can write captured input and output data into binary files, along with the target sections of code, and build an optimization framework around the input and output data, including the targeted sections of code. An optimization engineer can then use this optimization framework to develop optimized versions of the target code sections and can further test the optimized code section against actual data and results obtained from original runs.
The present disclosure provides a scalable container-based system implemented in computer instructions stored in a non-transitory medium. The present disclosure further provides a method of creating and operating a scalable container-based system.
The design, creation, use, and execution of command line parsers based on subcommand classes instead of boilerplate code is described. Commands and subcommands have corresponding class definitions, which upon instantiation based on command line content will provide and execute code to perform the command. Subcommand dispatching may be accomplished using delegates, using an interface implementation, or otherwise. Class attributes may define help text, argument aliases, and other metadata. Subcommand types may be passed as generic arguments, as objects, or otherwise. Arguments may be made optional or be required by providing or omitting class constructor parameter default values. By using classes to implement subcommands and avoiding reliance on large error-prone if or switch statements, parser development is made easier and more efficient.
A computer implemented method of generating a graphical interface including receiving and displaying a selection of elements among a plurality of graphical and/or data entry elements, each element having at least a property among a plurality of graphical and/or activation and/or content properties; receiving and displaying formulas, each formula linking at least two properties of one element or several elements of the selection; and determining from the selection of elements and the formulas a separate graphical interface program, the execution of the separate graphical interface program resulting in the display of the selection of elements, the properties of which are linked by the formulas.
An arithmetic logic unit is disclosed that includes a first logical circuit that generates a first partial sum result from three operands in a first stage of a single clock cycle of a processor; a second circuit that generates a second partial result in the same first stage of the clock cycle of the processor; and an adder that receives the first partial result from the first logical circuit and the second partial result from the second circuit and generates a secondary result during a second stage of the single clock cycle of the processor. The arithmetic logic unit may optionally further include a backend circuit that performs additional arithmetic and logic functions in the same single clock cycle of the processor.
A system is described for maintaining synchrony of operations among a plurality of devices that have independent clocking arrangements. The system includes a task distribution device that distributes tasks to a synchrony group comprising a plurality of devices that are to perform the tasks distributed by the task distribution device in synchrony. The task distribution device distributes each task to the members of the synchrony group over a network. Each task is associated with a time stamp that indicates a time, relative to a clock maintained by the task distribution device, at which the members of the synchrony group are to execute the task. Each member of the synchrony group periodically obtains from the task distribution device an indication of the current time indicated by its clock, determines a time differential between the task distribution device's clock and its respective clock and determines therefrom a time at which, according to its respective clock, the time stamp indicates that it is to execute the task.
Systems, devices, apparatuses, components, methods, and techniques for automatically generating media previews are provided. An example media system for automatically generating media previews for a particular artist include a trailer generation application configured to receive input specifying an artist and duration of a trailer, automatically select clips from two or more media items by the artist, and automatically arrange and combine the clips into a media trailer for later playback.
A RFID device configured to drive a display element. The RFID device may have a reader capable of sending and receiving radio frequency signals and a RFID tag in communication with the RFID reader. The RFID tag may have an antenna, a chip having a radio frequency detector, a backscatter modulator, a logic block and a multiplexer. The RFID device may also have a display in communication with the multiplexer of the chip.
To provide an image forming system capable of preventing printing that is not intended by a user, an image forming system includes a server capable of storing image data and an image forming apparatus connected to the server via a network and configured to form an image. The image forming apparatus includes an inquiring unit, a determining unit, a requesting unit, and an instructing unit. The inquiring unit is configured to inquire the server for a printing condition of the image data in a case where an input of a registration ID is accepted by an accepting unit, the printing condition being registered in association with the image data. The requesting unit is configured to request the server for downloading of the image data in a case where the determining unit determines that the image forming apparatus conforms with the printing condition. The instructing unit is configured to control an image forming unit to form the image on a sheet, based on the image data downloaded from the server.
An information processing apparatus has a release mode and a power saving mode with less power consumption, the information processing apparatus comprises: a communication part that communicates with a first information processing apparatus and a terminal apparatus; a storage part that stores first information which is information to be included in a response with respect to a command transmitted from the terminal apparatus by multicasting and received by the communication part; and a control part that sets a response function with respect to the command to either “valid” or “invalid” during the power saving mode. Wherein the control part transmits via the communication part the first information to the first information processing apparatus that performs a proxy response with respect to the command, and thereafter, sets the response function to “invalid” and executes a process to transit from the release mode to the power saving mode.
A memory management method for a memory storage device including a rewritable non-volatile memory module is provided according to an exemplary embodiment of the disclosure. The method includes: performing a data merge operation for at least one physical unit of the rewritable non-volatile memory module according to a write command from a host system; and adjusting times of performing the data merge operation according to a dispersion rate of a plurality of logical units corresponding to first data stored in at least one first-type physical unit of the rewritable non-volatile memory module.
A system includes a memory including a ring buffer having a plurality of slots and a guest driver associated with the ring buffer, which is associated with a virtual device. The guest driver is configured to detect that the guest driver is running on the virtual device, receive a batch of requests having an initial request and a final request, walk the ring buffer starting from an original slot, identify a last request in the batch that can be accommodated by an available slot, walk the ring buffer backwards from an end slot associated with the last request to the original slot, and execute each respective request from the last request to the initial request for each respective slot from the end slot to the original slot. The end slot is either a slot associated with the final request ending the batch of requests or a slot preceding an unavailable slot.
A recording/reproduction apparatus comprising an output unit outputs a clock signal to each of a plurality of recording media, a communication unit transmits a write command and write data to each of the plurality of recording media to write the data in the recording medium and receives a response to the write command, that is transmitted from each of the plurality of recording media, in accordance with a timing signal obtained by delaying the clock signal, and a control unit controls the communication unit to execute relay recording of, if data is transmitted and written in a first recording medium of the plurality of recording media, continuing the write of the data by switching a transmission destination of the data from the first recording medium to a second recording medium of the plurality of recording media.
In one embodiment, a method includes determining a size of a file associated with each job in a job queue of files to be migrated to one of a plurality of drives that includes at least one of each of the following: a faster drive and a relatively slower drive. The availability of a faster drive is determined. The file associated with the job in the job queue having a file size larger than a threshold is sent to the faster drive.
A shared storage system includes a plurality of storage processors. A first storage processor of the plurality of storage processors is coupled with a shared storage device having a plurality of storage devices. The first storage processor receives a first verify connectivity request from an initiator device. In response to the first verify connectivity request, the first storage processor transmits a first ready response to the initiator device. After transmitting the first ready response, the first storage processor detects that the first storage processor is decoupled from the shared storage device. In accordance with detecting that the first storage processor is decoupled from the shared storage device, the first storage processor transmits a not-ready response to the initiator device in response to a second verify connectivity request from the initiator device.
A method, computer program product, and computer system for receiving, at a computing device, an I/O request directed to a compressed data portion of a storage system. It may be determined whether the I/O request includes one of a first portion of information and a second portion of information. An address of the compressed data portion may be obtained via downward mapping if the I/O request includes the first portion of information. The address of the compressed data portion may be obtained via upward mapping if the I/O request includes the second portion of information. The I/O request may be executed at the compressed data portion.
A system and method of de-duplication includes receiving a first page, scanning a first structure, identifying a first match, determining a quantity of mappings to the first match is less than a threshold, and adding a first mapping to the first match. The method includes receiving a second page, scanning the first structure, identifying the first match, determining the quantity of mappings to the first match meets the threshold, and storing the second page in a second structure. The method includes receiving a third page, scanning the first structure, identifying the first match, determining the quantity of mappings to the first match meets the threshold, scanning the second structure, identifying the second page as the match, and creating a third structure that replaces the first match and includes an identifier node, the first match, and a second match with the second and third mapping identifying the second and third pages.
A method at an electronic device including a user input device, the method comprising: receiving data comprising displayable content and data indicating that touch events corresponding to a pattern of multiple touches are to be detected in order to display the displayable content; upon detecting touch events corresponding to the pattern of multiple touches, displaying the displayable content; and ceasing to display the displayable content once the touch events corresponding to the pattern of multiple touches are no longer detected.
User interface navigation on a personal electronics device based on movements of a crown is disclosed. The device can select an appropriate level of information arranged along a z-axis for display based on crown movement. The navigation can be based on an angular velocity of the crown.
The present disclosure relates to selecting individual tracks within a time-based media for playback. In certain embodiments, an adjustable playhead spans the tracks that a user desires to include in the preview. In one such implementation, the user may adjust the position of handles on the playhead such that the playhead spans the desired tracks. Playback using the playhead may play a preview of those tracks spanned by the playhead.
A method for navigating video content comprising the steps of receiving a video content item; receiving a plurality of thumbnails from the video content item, each thumbnail associated with a time point in the video content item; playing the video content item starting at a first time point; receiving in the user interface a gesture having a magnitude and a direction, the magnitude associated with a speed of playing of the video content item, the direction associated with a direction of playing of the video content item, and the gesture received at a second time point in the video content item; displaying a first subset of the plurality of thumbnails; receiving a selection of a third time point in the video content item; and playing the video content item at the third time point.
A method, apparatus, article of manufacture, and a memory structure for conveniently providing animated bitmap image files from media is described. The method uses a technique in which a plurality of PNG files are generated and transmitted to be presented to the user via an overlay to a media program player.
An information processing apparatus, which communicates with an external display apparatus, includes a specifying unit configured to specify a first object to be enlarged and displayed by the external display apparatus among a plurality of objects included in a page image, an acquisition unit configured to acquire a second object to be next enlarged and displayed by the external display apparatus from the page image, and a display control unit configured to display the page image on a display unit so that the first object and the second object are displayed with a positional relationship in the page image between the first object and the second object maintained.
An apparatus obtains application state information for another device and displays a login screen on a display that provides information for at least one application running on the other device. The information displayed may be an icon corresponding to an application running on the other device. The application state information may include an application identifier, a content identifier and a pointer to a location at which a given content is accessed by the application. An apparatus includes a display, application state monitor logic, operative to obtain application state information for another device, and login screen configuration logic, operatively coupled to the display. The login screen configuration logic is operative to configure a login screen on the display to provide information for at least one application running on the other device, based on the application state information for the other device obtained by the application state monitor logic.
The disclosed techniques immediately download, to a head-mounted display device or to a device connected to a head-mounted display device, data used to render each of multiple three-dimensional scenes that are part of an experience. An experience includes related and/or linked content that can be accessed and/or displayed for a particular purpose. In various examples, the experience can initially be accessed using a computing device (e.g., a laptop, a smartphone, etc.). The immediate download can be implemented in response to a user switching consumption of the experience from a display of the computing device to a display of the head-mounted display device so three-dimensional scenes can be consumed in a three-dimensional immersive environment (e.g., a three-dimensional coordinate space displayed via the head-mounted display device). Data for individual ones of the three-dimensional scenes is instantiated (e.g., rendered and displayed) asynchronously based on user navigation to a next three-dimensional scene.
A hovering and touch sensing apparatus with auxiliary capacitance-exciting signal includes a plurality of touch sensing electrodes, a system circuit and a touch control circuit. When an operating object approaches or touches the touch sensing electrodes for hovering or touch sensing, there is no common circuit loop between the system circuit and the touch-sensing circuit to prevent the influence of the system circuit to the touch control circuit. The touch control circuit sends a capacitance-exciting signal to the operating object through a first specific conductor. The touch control circuit sends an auxiliary capacitance-exciting signal to a selected touch-sensing electrode and a touch-sensing circuit receives a touch sensing signal from the selected touch-sensing electrode.
The present disclosure provides a touch display panel, a flexible display panel and a display apparatus. In one embodiment, light sensitive effect-based photo-sensitive diodes and switching transistors for controlling signal output of the photo-sensitive diodes are integrated in the display panel. Once a touch operation of an object (e.g., a finger) is implemented on a surface of the display panel, the photo-sensitive diode in a corresponding position can convert a sensed light intensity difference into an electrical signal difference to achieve detection of the touch operation.
Systems and methods are disclosed herein for determining the amounts of force applied by at least two fingers of a user to a touch input device having a touch input surface. In one example, a system may include a plurality of force sensors distributed about the touch input surface; a plurality of touch sensors distributed about the touch input surface; and a module for apportioning a first amount of force as measured by the plurality of force sensors to one of the at least two fingers, and for apportioning a second amount of force as measured by the plurality of force sensors to another of the at least two fingers. The system may also include a persistent data structure including force calibration data with force deflection measurement values as measured by each of the plurality of force sensors in response to a standardized force applied to various known locations on the touch input surface. The system may also include one or more matched filter modules.
An electronic device and an information processing method include a first body having a first surface and a second surface opposite to each other; a connecting body; and a second body having a first surface and a second surface opposite to each other, with the second body connected to the first body through the connecting body. A first display is arranged on at least the first surface of the first body. A first input unit is arranged on at least the second surface of the second body; wherein, the electronic device has a first outer surface that includes the first surface of the first body and the first surface of the second body, and a second outer surface that includes the second surface of the first body and the second surface of the second body.
A display device includes a plurality of sub pixels; a plurality of first electrodes, the sub pixel including the first electrode; a plurality of second electrodes, the second electrode being provided commonly for at least one row pixel group, the row pixel group including sub pixels arrayed in a line in a first direction, the plurality of second electrodes being arrayed in a second direction; a light emitting layer between the first electrode and the second electrode, the sub pixel including the light emitting layer; an output transistor connected with the first electrode, the output transistor capable of blocking supply of an electric current to the first electrode, the light emitting layer, and the second electrode; and a plurality of third electrodes facing the second electrodes, the third electrode and the second electrode forming capacitance, the third electrode being connected with a plurality of output terminals respectively.
A display panel, including: a pixel structure constituted by a plurality of sub-pixels, wherein sub-pixels in each row are arranged in alignment, sub-pixels in every two adjacent rows are spaced in a column direction by a distance of X sub-pixels, 0
According to various exemplary embodiments, an electronic pen and an electronic device for detecting the same are provided. The electronic pen includes: a pen housing; a substrate assembly mounted inside the pen housing, and comprises a coil and a substrate which configured to generate a resonant frequency by an induced current generated in the coil; and at least one packing member disposed on at least a part of the substrate of the substrate assembly, and includes at least a part thereof overlap an inner surface of the pen housing when the substrate assembly is mounted in the pen housing.
A computer-implemented method includes detecting a first window being displayed on a display of a host computing device, detecting graphical content on the first window, generating a second window (overlay) on the display, wherein the overlay is configured on a window layer above the first window, and changing graphical qualities of the overlay based on the detected graphical content of the first window. The graphical qualities may include at least one of a shape, size, color, transparency, or opacity of the overlay. The method can further include receiving input data corresponding to a movement of a cursor on the first window, setting a transparency of an area around the cursor to a first transparency, and setting a transparency of a remainder of the overlay to a second transparency, such that the area around the cursor appears to highlight a corresponding area of the graphical content on the first window.
Systems and methods are provided for automatically positioning a head-mounted display. The head-mounted display allows for hands-free engagement between a user and a wearable display. The automatic positioning may align the display with a landmark on the user, such as the user's eye or the user's iris, or with other components of the wearable display. User preferences for the position of the display may be saved for recall during later use.
A method for processing virtual reality (VR) content by a content providing device includes identifying cartesian coordinates of a first position on the VR content, estimating a movement of a user of the content providing device, identifying cartesian coordinates of a second position by applying a matrix representing the estimated movement of the user to the cartesian coordinates of the first position, converting the cartesian coordinates of the second position into spherical coordinates of the second position, and providing an area corresponding to the spherical coordinates of the second position to the user.
A modified sleep state graphics processing system includes a graphics processing system coupled to a central processing system that is configured to enter different sleep states. A power management engine coupled to the graphics processing system and the central processing system determines that the graphics processing system is operating above a graphics processing activity threshold and, in response, prevents the central processing system from entering a first subset of the different sleep states. The central processing system is configured to communicate with the graphics processing system to cause the graphics processing system to render graphics while prevented from entering the first subset of the different sleep states. The power management engine may then determine that the graphics processing system is operating below the graphics processing activity threshold and, in response, allow the central processing system to enter the first subset of the different sleep states.
A multiple graphics processing unit (GPU) based parallel graphics system comprising multiple graphics processing pipelines with multiple GPUs supporting a parallel graphics rendering process having an object division mode of operation. Each GPU comprises video memory, a geometry processing subsystem and a pixel processing subsystem. According to the principles of the present invention, pixel (color and z depth) data buffered in the video memory of each GPU is communicated to the video memory of a primary GPU, and the video memory and the pixel processing subsystem in the primary GPU are used to carry out the image recomposition process, without the need for dedicated or specialized apparatus.
Various embodiments of the present technology may comprise a method and apparatus for power management of a memory cell. The memory cell may be configured to operate at various voltage levels to mitigate power dissipation. The memory cell may receive a first voltage level during an active state and receive a second voltage level during an idle state. The active and idle states may be known based on predetermined system parameters. The second voltage level may be selected according to the particular characteristics of the memory cell in order to retain input data.
An IC includes logic groups each including a launch and a capture FF with a logic cloud in between. A power switch is in series with a power supply node of the logic groups. The logic groups have a clock-gating and power control (PCGC) block for dynamically generating a power supply enable (PS_EN) signal output coupled to a control node of the power switch and a clock output (CLK_OUT) signal coupled to a clock input of the launch or capture FF for clocking the logic groups. The PCGC blocks receive an EN signal and a CLK_IN signal and dynamically generate the PS_EN signal and CLK_OUT signals. During clock cycles at least one logic group(s) does not contribute to an intended logic result for the IC the CLK_OUT signal disables switching of at least a portion of the logic group(s) while the PS_EN signal turns off power to the logic group(s).
An electronic device is provided. The electronic device includes a battery, a power management integrated circuit (PMIC), that is electrically connected to the battery, adjusts at least part of power received from the battery, and outputs a controlled power, a processor electrically connected to the PMIC, at least one power sensor that is one of electrically connected between the battery and the PMIC and constitutes a part of the PMIC, and a control circuit electrically connected to the at least one power sensor. The control circuit acquires at least one of a current value and a power value input into the PMIC from the battery, determines whether at least one of the acquired current value and power value is greater than or equal to a threshold, and generates a first signal for controlling at least one of the PMIC and the processor, at least partially based on the determination.
A power adapter for supplying electrical power to a mobile device. The power adapter may have a processor and an interface for data communication and power transmission with the mobile device, memory internal to a casing of the power adapter, and an AC/DC power conversion circuit electrically coupled to the processor. The AC/DC power conversion circuit is configured to receive an AC power input and convert the AC power input to a DC power output over the interface for the mobile device. The processor is configured to: recognize a load associated with the mobile device connected to the DC power output; set the DC power output based on the load; receive backup data from the mobile device over the interface; and store the backup data from the mobile device within the memory.
Disclosed in various embodiments of the present invention are a display device and an electronic device having same, the display device comprising: a display element having at least one portion which can be changed into a curved shape; and a flexible window member stacked onto the display element, wherein the thickness of a portion of the window member is less than that of the other portions. The display device and the electronic device having same may vary according to embodiments.
A display apparatus includes: a display panel configured to display an image, one or more sound generation devices configured to vibrate the display panel to generate sound, a supporting member configured to support the display panel, a partition between the display panel and the supporting member, the partition including: a first side in a horizontal direction, and a second side in a vertical direction, one or more first pad parts on the first side of the partition, and one or more second pad parts on the second side of the partition, wherein a first of the one or more first pad parts includes a different material from a material of a first of the one or more second pad parts.
An optical numerical computation device relates light from a plurality of light sources to calculate an arithmetic solution. The optical numerical computation device includes input circuitry, pre-calculation circuitry, calculation circuitry, a light collection cavity, and a plurality of light computation components. The pre-calculation circuitry and calculation circuitry cause light sources to emit light representing the values of input operands, which is subsequently related within the light collection cavity. Sensors then generate resultant outputs at values indicative of the sensed light value. The respective wavelength of light emitted from or sensed by each light computation component may be associated with an operand arithmetic sign.
A circuit includes a current mirror circuit (CM circuit) including first and second transistors, a third transistor whose drain is electrically connected to a drain of the second transistor, a switch controlling the current output from the circuit, and first and second memory circuits. A reference current of the CM circuit is input to a drain of the first transistor; a current that is a copy of the reference current is output from the drain of the second transistor. When a current is output from the circuit, the reference current is not input to the CM circuit. A drain current corresponding to a voltage stored in the first memory circuit flows through the second transistor; a drain current corresponding to a voltage stored in the second memory circuit flows through the third transistor. The difference between the two drain currents corresponds to the output current of the circuit.
Automated measurement of fluid solution capacitance in industrial processes to determine solution concentration. Industrial process control transmitters determine solution concentration directly from solution capacitance and confirm concentration determinations based on solution conductivity. The industrial process control transmitters include terminals embodied in wire coils and/or metallic plates, at least one processor, and at least one computer readable memory device.
Provided is a flow rate control apparatus that includes a flow restrictor, a downstream side valve, a downstream side pressure sensor, first and second flow rate calculators, and a flow rate controller. The downstream side valve is disposed downstream of the flow restrictor in a flow path. The downstream side pressure sensor measures a pressure between the flow restrictor and the downstream side valve. The first flow rate calculator calculates a first flow rate of fluid flowing through the flow restrictor. The second flow rate calculator calculates a second flow rate of fluid flowing out of the downstream side valve on the basis of the first flow rate and the temporal variation in downstream side pressure measured by the downstream side pressure sensor. The flow rate controller controls the downstream side valve on the basis of a set flow rate and the second flow rate.
A process and a machine for improving a performance of a particular model of an aircraft, via expanding a range of airworthy locations for a center of gravity of an aircraft. process comprising augmenting a nose-down moment, for the particular model of the aircraft via addition of an ailevatoron mixer commanding an ailevatoron on each wing to generate a nose-down pitching moment.
Aspects of the disclosure relate to assigning a fleet of driverless vehicles to a plurality of parking locations for parking vehicles of the fleet. For instance, locations of the vehicles of the fleet as well as a number of available spaces at each of the plurality of parking location locations may be tracked. A subset of the fleet not already located at one of the plurality of parking locations is identified. At least one assignment assigning each vehicle of the subset to a respective parking location of the plurality of parking locations is determined according to the numbers of available spaces and the identified locations of the subset. For the at least one assignment, a total cost is determined by determining a cost value for each of a plurality of factors. The given assignment is sent to the fleet based on the total cost and the cost value.
An autonomous aerial vehicle (AAV) includes a plurality of lightbulb changers and an actuator for controlling the plurality of lightbulb changers. A structure database stores structure data corresponding to a structure, the structure data including coordinate data corresponding to three-dimensional coordinates of a location that facilitates an unobstructed view of a plurality of exterior lights of the structure, the structure data further including schematic data that indicates positions on the structure of the plurality of exterior lights. A flight control system controls a position of the AAV, based on the coordinate data, to the location that facilitates the unobstructed view of the plurality of exterior lights of the structure. A camera captures image data corresponding to the unobstructed view of the plurality of exterior lights of the structure. A processor controls the AAV to perform a lighting inspection procedure and/or a lightbulb replacement process.
A method, system, and computer program product of controlling driver interaction with an autonomous vehicle (AV) system for a vehicle are provided. In an embodiment, a signal indicating a present state of the driver is received. A signal indicating a past state of the driver is received. A present effectiveness of the driver is determined based on the received signals. A target level of engagement of the driver with the AV system is determined based on the present effectiveness of the driver.
Disclosed are systems and methods for securely controlling a vehicle using a mobile device. An exemplary method comprises authenticating, by a mobile device, a user attempting to perform commands controlling one or more vehicle systems of a coupled vehicle, retrieving profile information related to the user's preference associated with the coupled vehicle, establishing a connection between the mobile device and a security device of the coupled vehicle, authenticating the mobile device with the security device, forming, by the mobile device, commands to control the one or more vehicle systems based on command forming algorithms, the one or more vehicle systems comprising actuating devices of the vehicle and electronic systems of the vehicle, modifying the formed commands based on the profile information and safety information related to a location of the vehicle and transmitting the formed commands to the one or more vehicle systems via the security device to securely control the vehicle.
A remote control device and method for a UAV, and a motion control device attached to the UAV. The remote control device is carried by a user, allowing the user to remotely control motions of the UAV. A sensor unit generates sensing data by sensing a motion of the remote control device using a sensor. A control unit determines at least one among a direction of inclination of the remote control device, an angle of the direction of inclination, and a period of time for which the direction of inclination is maintained, based on the sensing data, and generating a control command for controlling a motion of the UAV using at least one among the direction of inclination, the angle of the direction of inclination, and the period of time for which the direction of inclination is maintained. A communication unit transmits the control command to the UAV.
An industrial data indexing system facilitates discovery and indexing of plant-wide data residing on multiple different data platforms. The indexing system automatically inventories industrial devices and other data sources located throughout a plant, and identifies available data items on each data source. The indexing system indexes the discovered data items in a federated data model that can subsequently be searched to locate data items or tags of interest. The federated data model records references to data items found on different types of data sources, including but not limited to industrial controller programs, human-machine interface applications, data historians, device documentation stores, inventory tracking systems, and other such data sources. The search system also caches selected portions of the data model to a user's personal device to allow these portion of the model to be accessed locally on the user's device without being online with the higher level indexing system.
Disclosed is a substrate processing system including a substrate processing apparatus configured to execute a predetermined processing on a substrate accommodated in a processing container, an input receiving unit configured to receive an input of a set value for executing the predetermined processing, and a determination unit configured to determine whether or not the set value received by the input receiving unit is valid based on the set value received by the input receiving unit and a characteristic of the substrate processing apparatus.
The system generally includes a crosspoint switch in a local data collection system having multiple inputs and multiple outputs including a first input connected to a first sensor and a second input connected to a second sensor. The multiple outputs include a first output and a second output configured to be switchable between a condition in which the first output is configured to switch between delivery of a first sensor signal and a second sensor signal and a condition in which there is simultaneous delivery of the first sensor signal and the second sensor signal. Each of multiple inputs is configured to be individually assigned to any of the multiple outputs. The local data collection system includes multiple data acquisition units each having an onboard card set configured to store calibration information and maintenance history. The local data collection system is configured to manage data collection bands.
An industrial control device allows end users to customize the mode model that defines rules for arbitrating between program and operator control. The industrial control device includes configuration tools that allow the user to define which set of states or modes are to be used for arbitrating between program control and operator control in accordance with the usages and standards of a given industrial facility or enterprise. The configuration tools also allow the commands for transitioning between the selected ownership states to be modified to conform to a desired ownership mode model. Using the mode model configuration tools, users can adapt the ownership mode model to conform to their own customer-specific or industry-specific standards of operator/program arbitration. In some scenarios, the customized mode model can be applied to defined multilevel equipment groupings such that control ownership is cascaded to all devices of a defined ownership chain.
Reducing nuisance notifications from building automation systems is described herein. One device includes a memory, and a processor configured to execute executable instructions stored in the memory to receive a notification of an alarm from a building automation system, compare attributes of the alarm to attributes of alarms included in a database of suppressed alarms, refrain from transmitting a notification of the alarm to a mobile device in response to the attributes of the alarm matching attributes of any of the alarms in the database, and transmit a notification of the alarm to a mobile device in response to the attributes of the alarm not matching the attributes of any of the alarms in the database.
A process cartridge includes a photoconductor unit and a development unit, which are assembled together while being allowed to be separated from each other. The photoconductor unit and the development unit include fitting portions that fix positions of the units to assemble the units, assembly guides that guide the units to an assembly position, and stopper portions that hold the units in the assembly position.
A process cartridge including a drum cartridge, a developing cartridge, and a waste toner container, is provided. The drum cartridge includes a photosensitive drum including a photosensitive layer and a rotation axis extending in an axial direction, a drum cleaner arranged to contact the photosensitive drum, a cleaner frame configured to accommodate the drum cleaner therein, and a waste toner conveyer tube connected with the cleaner frame. The developing cartridge is movable to be attached to and detached from the drum cartridge and includes a developer roller. The waste toner container is movable to be attached to and detached from the drum cartridge. When the developing cartridge and the waste toner container are attached to the drum cartridge, the waste toner container is connected with the waste toner conveyer tube and is located on an opposite side of the developing cartridge to the photosensitive drum.
An apparatus main body includes a main casing and a cover configured to rotatably move about a rotational axis located below an opening between an open position and a closed position. A drum cartridge includes a photosensitive drum and is configured to be installed into the apparatus main body through the opening. A developing cartridge includes a developing roller and is configured to be installed into the apparatus main body through the opening. A swing plate is attached swingably to the apparatus main body. The swing plate supports the developing cartridge. The swing plate includes a guide configured to guide installation of the developing cartridge into the apparatus main body. The swing plate is configured to swingably move in a state where the drum cartridge and the developing cartridge are installed in the apparatus main body, thereby causing the developing roller to move relative to the photosensitive drum.
An image forming apparatus includes an information obtainer, a memory, a candidate determining unit, and an image forming device. The information obtainer obtains feature information from the target recording medium. The memory stores at least one set of recording medium information regarding the target recording medium associated with the feature information and at least one set of image forming condition information corresponding to the recording medium information. The recording medium information is identification information. The candidate determining unit determines a candidate recording medium information from the recording medium information stored in the memory based on the feature information of the target recording medium obtained by the information obtainer. The image forming device forms an image on the target recording medium based on the image forming condition information in the memory according to the candidate recording medium information determined by the candidate determining unit.
A force for warping a regulating blade is imparted to the regulating blade in such a manner that a gap between a developer bearing member supported by a development frame member and the regulating blade attached to an attaching portion of the development frame member falls within a predetermined range over a longitudinal direction of the developer bearing member. The regulating blade is fixed to the attaching portion in a state in which the regulating blade is warped by the force imparted to the regulating blade and the gap is within the predetermined range over the longitudinal direction of the developer bearing member.
An electrophotographic photosensitive member (1) includes a conductive substrate (2) and a photosensitive layer (3). The photosensitive layer (3) is a single-layer photosensitive layer containing at least a charge generating material, an electron transport material, a hole transport material, and a binder resin. The electron transport material includes a naphthoquinone derivative represented by general formula (1). An amount of triboelectric charge of calcium carbonate as measured by charging the calcium carbonate through friction with the photosensitive layer (3) is at least +7 μC/g. In general formula (1), R11 and R12 are respectively the same as R11 and R12 described in the description.
A detection apparatus that detects a mark formed on a substrate is provided. The detection apparatus includes a substrate holder configured to hold the substrate, an optical system accommodated in the substrate holder, an image sensor configured to capture an image of the mark from the reverse surface side of the substrate through the optical system, and a processor configured to perform detection processing for the mark based on the image of the mark captured by the image sensor. The processor corrects a detection value of the mark based on the position of the mark on the substrate in the height direction and information concerning the telecentricity of the optical system.
A device may include a plurality of interferometers. The plurality of interferometers may include a parent interferometer, a first child interferometer coupled to a first branch of the parent interferometer, and a second child interferometer coupled to a second branch of the parent interferometer. At least one of the plurality of interferometers may be calibrated by maintaining collinearity of an output of the first branch and the second branch and using perturbation signals.
The invention relates to an electrochromic device comprising: a working electrode (2) comprising an electrochromic material containing at least one electrochromic polymer, said electrode being optionally in contact with a current collector (6); a solid electrolyte (3) which is in contact with each of said electrodes; and a counter-electrode (4) in a conductive metal material. The invention also relates to the various applications of such a device, especially for display.
The present invention relates to an electro-optical switching element comprising at least one light source, and a light converting layer, and to a use of the electro-optical switching element in an optical device. The invention further relates to an optical device comprising the electro-optical switching element.
According to an aspect, a display apparatus includes: a first light-transmissive substrate; a second light-transmissive substrate arranged to face the first light-transmissive substrate; a liquid crystal layer including polymer dispersed liquid crystals sealed between the first light-transmissive substrate and the second light-transmissive substrate; at least one light-emitting device arranged to face at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate; and at least one reflector arranged on at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate, the side surface of the first or second light-transmissive substrate being on an opposite side of the side surface of the first or second light-transmissive substrate to which the at least one light-emitting device faces, and configured to reflect light at the side surface on the opposite side.
A light source device includes a substrate and a plurality of light-emitting units disposed on a surface of the substrate. At least one of the light-emitting units includes a light source chip and an optical material layer covering the light source chip. A maximum width is defined as a distance between two farthest points on a pattern corresponding to a vertical projection of the optical material layer on the surface of the substrate, and a half of the maximum width is defined as a first width R. A maximum height H is defined as a vertical distance from the surface of the substrate to a highest point of the optical material layer away from the substrate. A ratio of R to H is between 5 and 1000. A display device applying the light source device is also provided.
According to one embodiment, a light source control apparatus controls a light source emitting phosphorescence. The light source control apparatus includes a driver configured to supply a drive pulse to the light source. The driver is configured to generate a first drive pulse comprising constant amplitude and a pulse width based at least in part on the lighting value and a second drive pulse comprising a constant pulse width and amplitude based at least in part on the lighting value. The driver is configured to supply the first drive pulse or the second drive pulse to the light source in accordance with the lighting value.
A liquid crystal display device includes a liquid crystal panel including a plurality of pixels that are arranged in a matrix pattern, a backlight provided on a back surface side of the liquid crystal panel to emit light for illuminating the liquid crystal panel, and a viewing angle restriction film provided between the liquid crystal panel and the backlight to narrow light distribution of the light emitted from the backlight in one direction. Each pixel includes a plurality of sub-pixels that are arranged correspondingly to a plurality of display colors. An aperture in each sub-pixel is elongated in the one direction in a surface of the liquid crystal panel.
The present disclosure provides a liquid crystal display panel and a manufacturing method thereof, a display device. The liquid crystal display panel comprises a display module (1), which comprises a plurality of pixel units, each of the pixel unit including a display area (101) and a non-display area (102), wherein a grounded anti-static film is formed on a part of a light-emitting surface of the display module (1) corresponding to the non-display area (102), and a metal grating film (201) having a polarizing function is formed on a part of the light-emitting surface of the display module (1) corresponding to the display area (101). The display device comprises the liquid crystal display panel as mentioned in the above technical solution.
Disclosed is a display device that includes a display area having an appearance of a specific color in a non-driving state or displaying a specific screen by using PDLC to improve esthetic appearance as in a home appliance. The display device comprises a reflective dispersed layer arranged on a display panel, wherein the reflective dispersed layer includes a PDLC layer between a first substrate and a second substrate, and a transflective layer arranged between the PDLC layer and the second substrate to transmit light externally emitted from the display panel and reflect externally incident light.
The disclosure discloses a display device. The display device with a display area, and a bezel area surrounding the display area includes a back plate, and a light guiding plate and an optical film arranged above the back plate in that order, wherein a display panel is further arranged above the optical film, and the display panel is supported and fixed by a frame arranged above the back plate, and located on a periphery of the light guiding plate and the optical film; and there is an adhesive coating layer arranged on such a part of a surface of the optical film facing the display panel that overlaps with the bezel area, and an adhesion coefficient of an adhesive material of the adhesive coating layer reduces as a temperature rises.
Eyewear for enhancing the contrast sensitivity of the human vision system through the use of lenses subdivided in areas of different light filtration properties arranged in specialized patterns, called multi-filters patterns, are provided. Of the multiple filtration areas, or filters, that compose each multi-filters patterns, one or more filters heavily reduces or totally block light arriving from some areas of the visual field of the eyes, while other filters lightly reduce or totally allow light from other areas of the same visual field. The resulting effect is to drive the auto-exposure function of the eye-brain vision system to adapt itself to areas of interest of the visual field thus improving contrast sensitivity and vision acuity in those areas while reducing or blocking light and glare from the rest of the visual field. The “multi-filters pattern” technology of the present invention can be implemented in lenses of stand-alone eyewear or as attachable “clip-on” lenses, to provide vision acuity improvement to stand-alone eyewear.
A vision simulation, on assumption that spectacles are worn, is performed for a first model designed by setting a target additional power of a desirable value at a position corresponding to a fitting point on a principal meridian. A correction amount is computed for correcting the difference between a simulation value obtained for the additional power at the position corresponding to the fitting point on the principal meridian through the vision simulation and the target additional power. A second model is designed by replacing the additional power with a value obtained by the addition of the calculated correction amount to the target additional power.
A method for manufacturing a facial-interface cushion for a head-mounted display may include (1) positioning a foam layer between a recessed mold member and an insertion mold member of a mold assembly, with a first end portion of the foam layer overlapping a second end portion of the foam layer, (2) forcing the insertion mold member against the foam layer in a direction toward the recessed mold member, thereby forming a shaped foam element including a first end portion that is compressed against a second end portion between the insertion mold member and the recessed mold member, and (3) heating the shaped foam element to form a facial-interface cushion by softening the shaped foam element and bonding the first end portion of the shaped foam element to the second end portion of the shaped foam element. Various other facial-interface cushions, systems, and methods for head-mounted displays are also disclosed.
Providing visual security verification includes an electronic credential of a credential holder causing credential holder information to be transmitted to an augmented reality device, superimposing the credential holder information on to a live image of an immediate environment of the augmented reality device to provide a superimposed image, where the credential holder information includes a picture of the credential holder, and providing security verification based on a comparison of the picture of the credential holder and the live image. The information may be stored in the augmented reality device and an identifier of the credential holder from the electronic credential may be used to look up the information. The information may be provided by the electronic credential to the augmented reality device. The augmented reality device may cache information for a subset of the credential holders. The information may be stored in a cloud storage device.
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
A projection optical unit for EUV projection lithography has a plurality of mirrors for imaging an object field into an image field with illumination light. At least one of the mirrors is an NI mirror and at least one of the mirrors is a GI mirror. A mirror dimension Dx of the at least one NI mirror in a plane of extent (xz) perpendicular to a plane of incidence (yz) satisfies the following relationship: 4 LLWx/IWPVmax
An imaging lens includes a first lens having at least one aspheric surface and positive refractive power; a second lens having at least one aspheric surface; a third lens having at least one aspheric surface; a fourth lens having at least one aspheric surface; a fifth lens having at least one aspheric surface; a sixth lens having two aspheric surfaces; and a seventh lens having two aspheric surfaces and negative refractive power, arranged in this order from an object side to an image plane side respectively with a space in between. The imaging lens has a total of seven lenses. The fifth lens is disposed away from the sixth lens by a specific distance on an optical axis. The second lens has a specific Abbe's number.
An optical assembly for a point action camera or other compact digital camera having a wide field of view, includes multiple lens elements, including at least one lens element that has an aspheric lens surface. The optical assembly is configured to provide a field of view in excess of 120 degrees. The optical assembly comprises less than two pixels or five microns of lateral chromatic aberration.
An optical assembly for a point action camera with a wide field of view has multiple lens elements configured to provide a field of view in excess of 150 degrees. One or more lens elements has an aspheric surface with an approximately 30 microns or less sag and an approximately 25 microns/millimeter or less aspheric sag slope.
A fiber distribution system (10) includes a fiber distribution hub (20, 300); at least one fiber distribution terminal (30, 100); and a cable (40) wrapped around a spool (110) of the fiber distribution terminal (30, 100). The fiber distribution terminal (30, 100) includes a spool (110) and a management tray (120) that rotate together. A second connectorized end (40b) of the cable (40) is held at a fiber optic adapter (125) on the tray (120). After dispensing the first connectorized end (40a) to the hub (20), an optical splitter (70, 130, 140) can be mounted to the tray (120). The splitter (26, 70, 130, 140, 306) has output adapters at which patch cords (50) can be inserted to connect subscribers to the system. The fiber distribution hub can use the same format of splitters (26, 70, 130, 140, 306). Other distributed splitter systems are provided with splicing and/or adding of splitters as needed.
Some embodiments include a latch mechanism and an optoelectronic module that includes the latch mechanism. The latch mechanism may include a driver, a follower, a pivot member, and a cam member. The driver may be configured to rotate relative to a housing of the optoelectronic module about an axis of rotation between a latched position and an unlatched position. The follower may be configured to be move when the driver rotates between the latched and unlatched position. The follower may include at least one electromagnetic interference (EMI) window that is configured to engage with at least one EMI protrusion positioned on the housing and thereby maintain contact with a cage of a host device.
An optical WDM device on a substrate and a fabrication method are disclosed. The WDM device includes a broadband light source, multiple output optical receivers, and a silicon waveguide terminated with two end reflectors, and a number of sequentially arranged WDM splitters between the two end reflectors. Each of the WDM splitters has a front and rear reflectors. The first end reflector is broadband coated to input light into the waveguide. The front reflectors of the WDM splitters and the second end reflector are narrowband coated so each reflector only selects to reflect one of the wavelengths from the light source. The rear reflectors of the WDM splitters are anti-reflection coated in order to transmit the unselected light to the next stage WDM splitter. The first end reflector is aligned to the input source, the WDM splitters and the second end reflector each are sequentially aligned to the output receivers.
The embodiments herein describe an optical transmitter that integrates a SCOWA into a photonic chip that includes a modulator. The embodiments herein place the SCOWA between the laser and the modulator. To accommodate the large mode size of the waveguide in the SCOWA, the photonic chip includes a pair of spot size converters coupled to the input and output of the SCOWA. Rather than amplifying a modulated signal as is typical with an inline amplifier, the SCOWA amplifies a continuous wave (CW) optical signal generated by the laser which introduces less noise and improves the OSNR of the transmitter.
According to one embodiment, a backlight device includes a case including a bottom plate formed from a metal plate, a plurality of side plates formed of metal plates along side edges of the bottom plate and a plurality of resin members each embedded into a gap between each adjacent pair of the side plates to form a corner portion, a light guide in the case, an optical sheet on the light guide, and a light source unit in the case, configured to emit light to enter the light guide.
An optical device includes a light-guiding plate and light sources that each emit light to the light-guiding plate. The light-guiding plate has light convergence portions, the light substantially converges at or scatters from a convergence point or line, and an image is formed by a collection of the convergence points or lines, and a light convergence portion causes light to be emitted in directions in which the light substantially converges in or scatters from a range including a point located a first distance apart from the emission surface, and a second light convergence portion causes light to be emitted in directions in which the light substantially converges in or scatters from a range including a point located a second distance, which is longer than the first distance, apart from the emission surface, and the number of first light convergence portions is higher than the number of second light convergence portions.
A tinted polarizing optical element includes a pre-manufactured polarizing optical assembly. The polarizing optical assembly includes a first layer provided from a thermoplastic or a thermosetting material; a second layer consisting of a polarizing film; and a third layer provided from a thermoplastic or a thermosetting material, wherein the second layer consisting of the polarizing film is disposed between the first layer and the third layer. The optical element further includes a fourth layer provided from a tinted thermoplastic material, which is disposed over the polarizing optical assembly such that the fourth layer is spaced apart from the polarizing film by at least one layer. The tint of the fourth layer is obtained independently from the polarizing optical assembly. The optical element also includes a fifth layer provided from a crystal thermoplastic material, which has a finished surface to provide a corrective effect.
A display panel assembly and an electronic device including the assembly are disclosed. In one aspect, the assembly includes a window cover including a display area and a non-display area and a display panel disposed on a location of a rear surface of the window cover corresponding to the display area. The assembly further includes a dielectric mirror layer disposed on a location of the rear surface of the window cover corresponding to the non-display area which selectively reflects light incident through the window cover to provide a metallic color sense to a user and a light absorbing layer absorbing light transmitted through the dielectric mirror layer.
A method for estimating precipitation values and associated uncertainties is provided. In an embodiment, precipitation records that indicate the occurrence and intensity of precipitation at specific locations are received by a weather computing system. The weather computing system uses the gauge information to separately create multiple realizations of precipitation occurrence fields and precipitation intensity fields. The weather computing system may model the occurrence of precipitation by proposing a value for each point independently and using the proposed value to update all prior proposals. The weather computing system may model the intensity of precipitation by modeling the spatial correlation of precipitation intensity and sampling from distributions at each location to determine the intensity of precipitation at each location. The weather computing system may then combine the precipitation intensity and occurrence fields into one or more final estimate fields.
Apparatus (57, 58) for determining permittivity in a downhole location comprises a sensor (57) including an elongate conducting line (62) supported on or adjacent a first side of a dielectric substrate (61). The sensor (57) also includes at least one conducting ground element (26, 27) that is spaced from the conducting line (62), the conducting line (62) being capable of juxtaposition to a downhole borehole wall (12). The apparatus further includes connected respectively to spaced locations along the conducting line at least two terminals (31, 32; 63, 64) of a vector network analyser (57b) that is capable of detecting one or more signal reflection characteristics whereby when the sensor (57) is juxtaposed to a borehole wall (12) the vector network analyser (57b) generates one or more signals that are processable to indicate the relative permittivity of rock (39) in which the borehole is formed.
A computer system for calculating traffic speed using sparse data. Sensors provide location data, over time, for a sampling of vehicles on the road network, such as a fleet of vehicles. This location data from a sampling of vehicles is sparse with respect to both road segments in the road network and time. From the location data, the computer system generates sample data associating speed of sampled vehicles on the road segments to points of time in a plurality of time slots. The computer system accesses other information that defines correlations among different road segments and among different time slots. The computer system derives at least an average vehicle speed for each road segment in the road network for at least the current time slot using the correlation data and the sparse sample data. The computer system can inter traffic volume from average vehicle speeds, and then compute environmental data.
A method for operating an electronic display includes receiving, using a controller, sensor data related to operational parameters of the electronic display based at least in part on illuminating a sense pixel of at least one row of pixels of the electronic display, wherein a first set of pixels below the at least one row of pixels renders a portion of a first image frame and a second set of pixels above the at least one row of pixels renders a portion of a second image frame. The method also includes adjusting, using the controller, image display on the electronic display based at least in part on the sensor data.
A light ranging and detection (LiDAR) device may combine the transmission of laser pulses. Different trains of pulses from different transmitters may be combined and transmitted to an environment via a common optical path. The laser pulses transmitted from one train of pulses may be in a polarization state that is orthogonal to a polarization state for the laser pulses of the other train of pulses. Reflections for the different trains of pulses may be received via the common optical path and separated according to polarization state. Reflections of the train of pulses may be directed to one receiver and reflections of the other train of pulses may be directed to a different receiver. The transmission delta between the different trains of pulses may be dynamically configured. The pulse repetition rate of each train of pulses may also be configured.
An example sonar transducer assembly is provided including at least one transducer element and a flexible printed circuit board (PCB) including at least one set of electrical connections for the at least one transducer element. The electrical connections include flex tabs configured to flex out of a PCB plane. The sonar transducer assembly also includes a support structure including an aperture for the at least one transducer element. The support structure is configured to support the body of the PCB, allow flexion of the flex tabs into the aperture, and retain the at least one transducer element in the at least one aperture. The transducer element is installed in a direction that is perpendicular to the PCB plane causing the flex tabs to flex outwardly from the PCB plane, thereby creating an elastic force of the flex tabs applied against opposing ends of the at least one transducer element.
A sonar mapping system that includes a sonar transducer assembly configured for mounting on a watercraft, and a display configured to show a topographical chart of a body of water. The sonar mapping system further includes a processor coupled to the sonar transducer assembly and display. The processor is configured to create the topographical chart in real time, and to update the topographical chart in real time, based on sonar data provided by the sonar transducer assembly. The processor is configured to render the created or updated topographical chart on the display. The sonar mapping system has memory accessible by the processor and configured to store the topographical chart rendered by the processor, and to store the sonar data provided by the sonar transducer assembly. The sonar data includes information indicative of vegetation present on a lakebed, seabed, or riverbed surface, the information being displayed on the topographical chart.
An optical sensor device configured to detect a time of flight of an electromagnetic signal includes a semiconductor substrate with a conversion region configured to convert at least a portion of the electromagnetic signal into photo-generated charge carriers. A deep control electrode is formed in a trench extending into the semiconductor substrate. The deep control electrode extends deeper into the semiconductor substrate than a shallow control electrode. A control circuit is configured to apply to the deep control electrode and to the shallow control electrode varying potentials having a fixed phase relationship to each other, to generate electric potential distributions in the conversion region, by which the photo-generated charge carriers in the conversion region are directed. The directed photo-generated charge carriers are detected at at least one readout node.
A time-resolving sensor includes a single-photon avalanche diode (SPAD), a logic circuit and differential time-to-charge converter (DTCC) circuit. The SPAD is responsive to a shutter signal to generate an output signal based on detecting an incident photon. The logic circuit generates first and second enable signals. The DTCC includes a capacitor device, first and second switching devices, and an output circuit. The first switching device is responsive to the first enable signal to transfer a charge on the capacitor device to the first floating diffusion. The second switching device is responsive to the second enable signal to transfer a remaining charge on the capacitor device to the second floating diffusion. The output circuit outputs a first voltage that is based on the first charge on the first floating diffusion and a second voltage that is based on the second charge on the second floating diffusion.