Preparation of urea-formaldehyde/poly(butylene succinate) and its ternary biodegradable polymer nano slow/controlled release materials by reactive extrusion

    公开(公告)号:US11732078B2

    公开(公告)日:2023-08-22

    申请号:US16936242

    申请日:2020-07-22

    IPC分类号: C08F283/02 C08G71/02

    CPC分类号: C08F283/02 C08G71/02

    摘要: The invention relates to the field of preparing biodegradable polymer slow/controlled release composite, in particular to a biodegradable polymer slow/controlled release binary composite urea-formaldehyde/poly(butylene succinate) and a biodegradable polymer slow/controlled release ternary nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate. The following steps are included: uniformly mixing two components poly(butylene succinate) and methylol-urea or three components poly(butylene succinate), methylol-urea and potassium dihydrogen phosphate, and then extruding the resulting mixture by an extruder, and the biodegradable polymer slow/controlled release composite urea-formaldehyde/poly(butylene succinate) containing nutrient N and the biodegradable polymer slow/controlled release nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate containing nutrients of N, P and K are obtained respectively. As one of the raw materials, methylol-urea, the precursor of urea-formaldehyde, can react by way of melt polycondensation to form urea-formaldehyde macromolecular chains with different polymerization degrees at high temperature in the extruder, which are dispersed among the PBS macromolecular chains, thereby obtaining the composite UF/PBS of the present invention; and the hindering effect of the molecular segments of urea-formaldehyde and poly(butylene succinate) and the hydrogen bond interaction between the components result in that potassium dihydrogen phosphate crystals dissolved in the water produced by the polycondensation reaction are restricted to nanoscale during their precipitation process, so as to prepare nanocomposite UF/PBS/MKP. The prepared composites all have excellent mechanical properties, and can be directly used as a biodegradable polymer slow/controlled release fertilizer, or as a matrix polymer to prepare other types of slow release fertilizers, and the formulae with high PBS contents can also replace PBS to prepare other agricultural implements, such as agricultural films, nursery pots and vegetation nets.

    HIGHLY STRONG AND TOUGH PHOTO-CROSSLINKED HYDROGEL MATERIAL AND ITS PREPARATION AND APPLICATION

    公开(公告)号:US20230130864A1

    公开(公告)日:2023-04-27

    申请号:US17993884

    申请日:2022-11-24

    发明人: Yu SUN

    摘要: This invention provides preparations and applications of a highly strong and tough photo-crosslinked hydrogel material. The hydrogel materials are made from the o-nitrobenzyl phototriggers modified photosensitive polymer derivative, double bond groups modified polymer derivative, and photoinitiator. This invention significantly improved the properties of hydrogels by controlling the average molecular weight (arm length) of photosensitive poly (ethylene glycol) (with o-nitrobenzyl phototriggers modification) and its derivatives, and the molar ratio of o-nitrobenzyl phototriggers to poly (ethylene glycol) and its derivatives. Compared with prior technologies, the strength and/or toughness of the hydrogels in this invention are increased by one order of magnitude or even higher. These advances solve the problems of weak mechanical properties in current hydrogel materials and widen the applications of hydrogel materials.

    PHOTOCURABLE MATERIAL COMPOSITION, CURED PRODUCT OF PHOTOCURABLE MATERIAL COMPOSITION AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20220282020A1

    公开(公告)日:2022-09-08

    申请号:US17751929

    申请日:2022-05-24

    IPC分类号: C08F283/02

    摘要: Disclosed is a photocurable material composition having a cured product which has both deflection temperature under load of 40° C. or more and Charpy impact strength (with a notch) of 20 kJ/m2 or more after ultraviolet irradiation and the cured product thereof. The photocurable material composition comprises at least a monofunctional acrylate having a five-membered ring containing an ether bond and a polycarbonate resin soluble in the monofunctional acrylate, wherein the content of the monofunctional acrylate having a five-membered ring containing an ether bond is 18% by weight to 80% by weight and the content of the polycarbonate resin is 10% by weight to 40% by weight.

    TONER FOR DEVELOPMENT OF ELECTROSTATIC IMAGES

    公开(公告)号:US20210389687A1

    公开(公告)日:2021-12-16

    申请号:US17291138

    申请日:2019-11-20

    申请人: KAO CORPORATION

    摘要: The invention relates to a toner for development of electrostatic images excellent in fusing property on polypropylene films and excellent in rubfastness of printed images, and a resin composition for a toner for development of electrostatic images. The toner for development of electrostatic images and the resin composition for a toner for development of electrostatic images each contain an amorphous polyester-based resin A and a crystalline polyester-based resin C, wherein the amorphous polyester-based resin A has a constituent moiety derived from a polyester resin, and a constituent moiety derived from a reactive functional group-having modified polyolefin-based polymer A, the polyester resin-derived constituent moiety and the modified polyolefin-based polymer A-derived constituent moiety being bonded via a covalent bond, and the amount of the modified polyolefin-based polymer A-derived constituent moiety is 5% by mass or more and 30% by mass or less relative to the total amount of the resin component in the toner.

    PREPARATION OF UREA-FORMALDEHYDE/POLY(BUTYLENE SUCCINATE) AND ITS TERNARY BIODEGRADABLE POLYMER NANO SLOW/CONTROLLED RELEASE MATERIALS BY REACTIVE EXTRUSION

    公开(公告)号:US20210261709A1

    公开(公告)日:2021-08-26

    申请号:US16936242

    申请日:2020-07-22

    IPC分类号: C08F283/02 C08G71/02

    摘要: The invention relates to the field of preparing biodegradable polymer slow/controlled release composite, in particular to a biodegradable polymer slow/controlled release binary composite urea-formaldehyde/poly(butylene succinate) and a biodegradable polymer slow/controlled release ternary nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate. The following steps are included: uniformly mixing two components poly(butylene succinate) and methylol-urea or three components poly(butylene succinate), methylol-urea and potassium dihydrogen phosphate, and then extruding the resulting mixture by an extruder, and the biodegradable polymer slow/controlled release composite urea-formaldehyde/poly(butylene succinate) containing nutrient N and the biodegradable polymer slow/controlled release nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate containing nutrients of N, P and K are obtained respectively. As one of the raw materials, methylol-urea, the precursor of urea-formaldehyde, can react by way of melt polycondensation to form urea-formaldehyde macromolecular chains with different polymerization degrees at high temperature in the extruder, which are dispersed among the PBS macromolecular chains, thereby obtaining the composite UF/PBS of the present invention; and the hindering effect of the molecular segments of urea-formaldehyde and poly(butylene succinate) and the hydrogen bond interaction between the components result in that potassium dihydrogen phosphate crystals dissolved in the water produced by the polycondensation reaction are restricted to nanoscale during their precipitation process, so as to prepare nanocomposite UF/PBS/MKP. The prepared composites all have excellent mechanical properties, and can be directly used as a biodegradable polymer slow/controlled release fertilizer, or as a matrix polymer to prepare other types of slow release fertilizers, and the formulae with high PBS contents can also replace PBS to prepare other agricultural implements, such as agricultural films, nursery pots and vegetation nets.