EXTRUSION GRANULATED UREA-FORMALDEHYDE-BASED MULTI-NUTRIENT SLOW/CONTROLLED RELEASE FERTILIZER AND PREPARATION METHOD THEREOF

    公开(公告)号:US20190218152A1

    公开(公告)日:2019-07-18

    申请号:US16180889

    申请日:2018-11-05

    Abstract: The invention relates to the field of slow/controlled release fertilizer, in particular to a urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer and a preparation method thereof. The urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer comprises ammonium polyphosphate, inorganic silica gel and urea-formaldehyde, wherein the phosphorus-oxygen double bond of ammonium polyphosphate can at least form hydrogen bond linkage with a urea-formaldehyde molecule chain, the hydroxyl group of the inorganic silica gel can at least form hydrogen bond linkage with the urea-formaldehyde molecular chain, and ammonium polyphosphate, inorganic silica gel and urea-formaldehyde together form a hydrogen bond associated polymer network structure. The invention can prepare a urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer comprising a strong hydrogen bond network structure by using a conventional aqueous solution polymerization in combination with a normal temperature extrusion granulation process, avoiding the coating process in the latter stage of the preparation of a coated fertilizer, achieving a simple and effective preparation process, and saving a lot of manpower and material resources. The urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer provided by the invention can stably and continuously release nitrogen nutrient throughout the release period, thereby making up for the shortcoming of excessively long nutrient release period of the existing urea-formaldehyde fertilizers.

    Preparation of urea-formaldehyde/poly(butylene succinate) and its ternary biodegradable polymer nano slow/controlled release materials by reactive extrusion

    公开(公告)号:US11732078B2

    公开(公告)日:2023-08-22

    申请号:US16936242

    申请日:2020-07-22

    CPC classification number: C08F283/02 C08G71/02

    Abstract: The invention relates to the field of preparing biodegradable polymer slow/controlled release composite, in particular to a biodegradable polymer slow/controlled release binary composite urea-formaldehyde/poly(butylene succinate) and a biodegradable polymer slow/controlled release ternary nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate. The following steps are included: uniformly mixing two components poly(butylene succinate) and methylol-urea or three components poly(butylene succinate), methylol-urea and potassium dihydrogen phosphate, and then extruding the resulting mixture by an extruder, and the biodegradable polymer slow/controlled release composite urea-formaldehyde/poly(butylene succinate) containing nutrient N and the biodegradable polymer slow/controlled release nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate containing nutrients of N, P and K are obtained respectively. As one of the raw materials, methylol-urea, the precursor of urea-formaldehyde, can react by way of melt polycondensation to form urea-formaldehyde macromolecular chains with different polymerization degrees at high temperature in the extruder, which are dispersed among the PBS macromolecular chains, thereby obtaining the composite UF/PBS of the present invention; and the hindering effect of the molecular segments of urea-formaldehyde and poly(butylene succinate) and the hydrogen bond interaction between the components result in that potassium dihydrogen phosphate crystals dissolved in the water produced by the polycondensation reaction are restricted to nanoscale during their precipitation process, so as to prepare nanocomposite UF/PBS/MKP. The prepared composites all have excellent mechanical properties, and can be directly used as a biodegradable polymer slow/controlled release fertilizer, or as a matrix polymer to prepare other types of slow release fertilizers, and the formulae with high PBS contents can also replace PBS to prepare other agricultural implements, such as agricultural films, nursery pots and vegetation nets.

    PREPARATION OF UREA-FORMALDEHYDE/POLY(BUTYLENE SUCCINATE) AND ITS TERNARY BIODEGRADABLE POLYMER NANO SLOW/CONTROLLED RELEASE MATERIALS BY REACTIVE EXTRUSION

    公开(公告)号:US20210261709A1

    公开(公告)日:2021-08-26

    申请号:US16936242

    申请日:2020-07-22

    Abstract: The invention relates to the field of preparing biodegradable polymer slow/controlled release composite, in particular to a biodegradable polymer slow/controlled release binary composite urea-formaldehyde/poly(butylene succinate) and a biodegradable polymer slow/controlled release ternary nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate. The following steps are included: uniformly mixing two components poly(butylene succinate) and methylol-urea or three components poly(butylene succinate), methylol-urea and potassium dihydrogen phosphate, and then extruding the resulting mixture by an extruder, and the biodegradable polymer slow/controlled release composite urea-formaldehyde/poly(butylene succinate) containing nutrient N and the biodegradable polymer slow/controlled release nanocomposite urea-formaldehyde/poly(butylene succinate)/potassium dihydrogen phosphate containing nutrients of N, P and K are obtained respectively. As one of the raw materials, methylol-urea, the precursor of urea-formaldehyde, can react by way of melt polycondensation to form urea-formaldehyde macromolecular chains with different polymerization degrees at high temperature in the extruder, which are dispersed among the PBS macromolecular chains, thereby obtaining the composite UF/PBS of the present invention; and the hindering effect of the molecular segments of urea-formaldehyde and poly(butylene succinate) and the hydrogen bond interaction between the components result in that potassium dihydrogen phosphate crystals dissolved in the water produced by the polycondensation reaction are restricted to nanoscale during their precipitation process, so as to prepare nanocomposite UF/PBS/MKP. The prepared composites all have excellent mechanical properties, and can be directly used as a biodegradable polymer slow/controlled release fertilizer, or as a matrix polymer to prepare other types of slow release fertilizers, and the formulae with high PBS contents can also replace PBS to prepare other agricultural implements, such as agricultural films, nursery pots and vegetation nets.

    Extrusion granulated urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer and preparation method thereof

    公开(公告)号:US10906843B2

    公开(公告)日:2021-02-02

    申请号:US16180889

    申请日:2018-11-05

    Abstract: The invention relates to the field of slow/controlled release fertilizer, in particular to a urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer and a preparation method thereof. The urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer comprises ammonium polyphosphate, inorganic silica gel and urea-formaldehyde, wherein the phosphorus-oxygen double bond of ammonium polyphosphate can at least form hydrogen bond linkage with a urea-formaldehyde molecule chain, the hydroxyl group of the inorganic silica gel can at least form hydrogen bond linkage with the urea-formaldehyde molecular chain, and ammonium polyphosphate, inorganic silica gel and urea-formaldehyde together form a hydrogen bond associated polymer network structure. The invention can prepare a urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer comprising a strong hydrogen bond network structure by using a conventional aqueous solution polymerization in combination with a normal temperature extrusion granulation process, avoiding the coating process in the latter stage of the preparation of a coated fertilizer, achieving a simple and effective preparation process, and saving a lot of manpower and material resources. The urea-formaldehyde-based multi-nutrient slow/controlled release fertilizer provided by the invention can stably and continuously release nitrogen nutrient throughout the release period, thereby making up for the shortcoming of excessively long nutrient release period of the existing urea-formaldehyde fertilizers.

Patent Agency Ranking