CERAMIC COMPOSITE MATERIAL
    9.
    发明公开

    公开(公告)号:US20230192553A1

    公开(公告)日:2023-06-22

    申请号:US18113432

    申请日:2023-02-23

    申请人: Oulun yliopisto

    摘要: A process for manufacturing ceramic-metal composite material, comprises dissolving ceramic powder into water to obtain an aqueous solution of ceramic; mixing metal powder having a multimodal particle size where largest particle size is one fourth of the minimum dimension of a device, with the aqueous solution of ceramic to obtain a powder containing ceramic precipitated on the surface of metal particles; mixing the powder containing ceramic precipitated on the surface of the metal particles, with ceramic powder having a particle size below 50 μm, to obtain a powder mixture; adding saturated aqueous solution of ceramic to the powder mixture to obtain an aqueous composition containing ceramic and metal; compressing the aqueous composition to form a disc of ceramic-metal composite material containing ceramic and metal; and removing water from the ceramic-metal composite material; wherein ceramic content of the disc is 10 vol-% to 35 vol-%. Alternatively, ceramic-ceramic composite material may be manufactured.

    Method for manufacturing Ni-based alloy member

    公开(公告)号:US11566313B2

    公开(公告)日:2023-01-31

    申请号:US16058497

    申请日:2018-08-08

    摘要: Provided is a method for manufacturing an Ni-based alloy member in which the equilibrium amount of γ′ phase precipitation at 700° C. is from 30 to 70 volume %. The method includes the steps of preparing an Ni-based alloy powder having a predetermined chemical composition; forming a precursor body wherein an average grain diameter of the γ phase grains is 50 μm or less, by using the Ni-based alloy powder; and heating the precursor body to a temperature at least the γ′ phase solvus temperature and subsequently slow-cooling the heated precursor body from the temperature to a temperature at least 100° C. lower than the γ′ phase solvus temperature at a cooling rate of 100° C./h or lower. There is obtained a softened body in that the γ′ phase particles of at least 20 volume % precipitate between/among the γ phase grains having an average grain diameter of 50 μm or less.