Abstract:
A rate controller in a transcoder, which receives a stream of compressed frames carried in a bit stream, selectively determines whether to quantize and/or threshold slices of a frame carried in the stream of frames. The rate controller determines the input size of the frame and based at least in part upon at least a desired size, requantizes and/or thresholds the frame such that the output size of the frame is approximately the desired size.
Abstract:
Apparatuses and methods for improving coding processes and coding parameters for coding video data are provided for. A coder may select coding parameters for video data according to a default coding policy. The default coding policy may include selection of prediction modes (e.g., intra-coding or inter-coding) for each pixel group in each frame. A video coder may select some pixel groups in a frame to be coded as refresh pixel groups as an exception to the default assignment policies. The selection of refresh pixel groups may be based on prediction relationships among multiple frames of source video data. The default coding of the refresh pixel groups is then modified to enhanced the coding of the refresh pixel groups. The refresh pixel groups may permit fewer intra (I) frames be sent and/or may improve the quality of the recovered video.
Abstract:
The method described enables a high accuracy of motion measurement to be achieved with simple circuitry and overcomes some of the most important sources of error introduced in other systems. Many of the previous techniques may be extended by using a hierarchical technique to improve the accuracy or resolution of a simple estimator e.g. hierarchical block matching or successive approximate gradient systems. The invention described in this patent introduces novel techniques of weighted-sample area matching, effectively giving soft boundaries to the picture areas used to assess motion within a picture, and/or with a technique of adjusting the picture resolution between successive stages of motion measurement. The combination of these techniques reduces many of the limitations of previous techniques.
Abstract:
Generating 3D content is described. A method includes identifying a group of videos of an event. The method includes detecting a first reference point in a first video and a second video from the group of videos. The method also includes creating a first three dimensional video frame based on a first video frame of the first video and a second video frame of the second video using the first reference point. The method further includes creating a second three dimensional video frame based on a third video frame of the first video and a fourth video frame of the second video using a second reference point. The method includes creating a three dimensional video by combining the first three dimensional frame and the second three dimensional frame in a sequential order based on respective timestamps of the first three dimensional frame and the second three dimensional frame.
Abstract:
A method represents a correlated set of images. The correlation can be spatial or temporal. A lossy operation is applied to each image in the correlated set to generate a coarse image. The coarse image is encoded losslessly to yield an encoded coarse image. Each image is also represented by syndrome bits. The combination of the encoded coarse images and the syndrome bits represent the correlated set of images.
Abstract:
A method of decoding a current layer using inter-layer prediction is disclosed. The present invention includes obtaining a first flag information indicating whether a current block of the current layer is coded using the inter-layer prediction, obtaining a quality identification information identifying a quality of the current block, obtaining an information for controlling a characteristic of a deblocking filter based on the first flag information and the quality identification information, and executing deblocking filtering using the information for controlling the characteristic of the deblocking filter.
Abstract:
In this invention, an approach is employed to transmit as a data train in transmitting every frame picture data compressed by using frame correlation and compressed picture data necessary for decoding the corresponding frame in the data train in each of the respective frames and copying compressed picture data of sum sets of compressed picture data included within the respective frames into the respective frames. Thus, in accordance with this invention, in the case where transmission of compressed picture data is carried out in frame units having undergone switching, there is no possibility that degradation of the picture quality has taken place.
Abstract:
Embodiments of the present invention comprise systems and methods for predicting image elements, comprising extracting a low dynamic range (LDR) image value from a received LDR image data; modifying the LDR image value based on prediction data of a received high dynamic range (HDR) image data; and predicting an HDR image element based on the modified LDR image value and an HDR residual image element of the received HDR image data.
Abstract:
An apparatus generally having a first circuit and a second circuit is disclosed. The first circuit may be configured to (i) copy a plurality of first reference samples of a first reference image from an external memory, the first reference samples being proximate a first position within the first reference image and (ii) generate a first motion vector corresponding to a first current block of a current image by searching among the first reference samples. The second circuit may be configured to (i) copy a plurality of second reference samples of the first reference image from the external memory, the second reference samples being (a) proximate a second position within the first reference image and (b) non-adjacent the first reference samples and (ii) generate a second motion vector corresponding to the first current block by searching among the second reference samples.
Abstract:
To track moving objects in a smaller number of temporarily stored time-series pictures, regarding N consecutive pictures (N≧2) within the time-series pictures, a method comprises the steps of: (a) by assigning the same ID to adjacent blocks if the absolute value of the difference between motion vectors of the blocks are less than a predetermined value, assigning different IDs to moving objects overlapping in a picture; (b) judging whether or not a first object of a first block group assigned a first ID and a second object of a second block group assigned a second ID are in contact with each other in each of the N consecutive pictures, and further each correlation between the first objects of temporally adjacent pictures in the N consecutive pictures is more than or equal to a predetermined value; and (c) tracking the first and second objects backward in time after the judgment at step (b) is positive.