Abstract:
A data receiving circuit is provided. The data receiving circuit includes a data input circuit, a latch circuit, and a current source. The data input circuit is configured to receive an input signal. The latch circuit is configured to output an output signal in response to the input signal. The current source is configured to provide a current to the latch circuit. The current source is different from the data input circuit.
Abstract:
The system may include a digital-to-analog converter configured to convert a digital signal to an analog signal. The system may include sample/hold circuits configured to receive and store the analog signal. The system may include an address controller configured to regulate which sample/hold circuits propagate the analog signal. The sample/hold circuits may be configured to feed the analog signal to devices of a memory array. The system may include an output circuit configured to program the devices by comparing currents of the devices to a target current. In response to one or more of the currents of the devices being within a threshold range, the output circuit may discontinue programming the corresponding devices. In response to one or more of the currents of the devices not being within the threshold range, the output circuit may continue programming the corresponding devices.
Abstract:
The system may include a digital-to-analog converter configured to convert a digital signal to an analog signal. The system may include sample/hold circuits configured to receive and store the analog signal. The system may include an address controller configured to regulate which sample/hold circuits propagate the analog signal. The sample/hold circuits may be configured to feed the analog signal to devices of a memory array. The system may include an output circuit configured to program the devices by comparing currents of the devices to a target current. In response to one or more of the currents of the devices being within a threshold range, the output circuit may discontinue programming the corresponding devices. In response to one or more of the currents of the devices not being within the threshold range, the output circuit may continue programming the corresponding devices.
Abstract:
Circuits and methods for reducing and cancelling out kickback noise are disclosed. In one example, a circuit for a comparator is disclosed. The circuit includes: a first transistor group, a second transistor group, and a first switch. The first transistor group comprises a first transistor having a drain coupled to a first node, and a second transistor having a source coupled to the first node. Gates of the first transistor and the second transistor are coupled together to a first input of the comparator. The second transistor group comprises a third transistor having a drain coupled to a second node, and a fourth transistor having a source coupled to the second node. Gates of the third transistor and the fourth transistor are coupled together to a second input of the comparator. The first switch is connected to and between the first node and the second node.
Abstract:
Circuits and methods for reducing and cancelling out kickback noise are disclosed. In one example, a circuit for a comparator is disclosed. The circuit includes: a first transistor group, a second transistor group, and a first switch. The first transistor group comprises a first transistor having a drain coupled to a first node, and a second transistor having a source coupled to the first node. Gates of the first transistor and the second transistor are coupled together to a first input of the comparator. The second transistor group comprises a third transistor having a drain coupled to a second node, and a fourth transistor having a source coupled to the second node. Gates of the third transistor and the fourth transistor are coupled together to a second input of the comparator. The first switch is connected to and between the first node and the second node.
Abstract:
An oscillation maintenance circuit with comparator-based pulse generation is provided. By sampling an RF signal and controlling a pulse generation circuit to generate a pulse signal of the same frequency as the RF signal, a switch unit is controlled to be ON/OFF at a same frequency as the RF signal, achieving synchronization between change of the current injection and the RF signal. Thus, the oscillation frequency is not affected by current injection, ensuring the FSK communication performance. At the same time, two comparators are respectively compared with two reference voltage levels to obtain an output pulse signal, and the reference voltage levels can be adjusted according to practical requirements, so that the switch-on point of time and current injection time duration are adjustable, maximizing the efficiency of current injection, resulting in simple circuit structure, low power consumption, and increased communication distance of an HDX passive RFID transponder.
Abstract:
A comparator includes a current mirror module, a comparison module and a buffering and outputting module. The current mirror module provides a bias current to the comparison module. The comparison module comprises a positive input end, a first negative input end and a second negative input end, the positive input end connects to an external terminal, the first negative input end and the second negative input end input a low threshold voltage and a high threshold voltage, respectively. The comparison module compares a voltage of the positive input end to the low threshold voltage and the high threshold voltage, and outputs a comparison result to the buffering and outputting module.
Abstract:
An oscillator circuit of the type comprising a flip-flop for generating a clock signal and two comparators for comparing a reference voltage with the voltage across a first capacitor which is charged during a first cycle of the clock signal and the voltage across a second capacitor which is charged during a second cycle of a clock signal provides a means for removing the effects of any offset in either comparator. This is achieved by reversing the inputs of the comparators for each cycle of the output frequency. Thus an offset in a comparator which would increase the clock period on one cycle will reduce the period of the next cycle by the same amount. As a net result, the period of time over two clock periods will stay constant regardless of any offset drift in a comparator.
Abstract:
An anti process variation self-adjustable on-chip oscillator has been disclosed according to the present invention. The on-chip oscillator includes the following components integrated on a same chip: a reference oscillation unit for producing reference pulse; an oscillation unit to be adjusted for producing output pulse; and a self-adjustable logic control unit for receiving the reference pulse and output pulse, and for transmitting a corresponding adjustment signal to the oscillation unit to be adjusted based on the received reference pulse and output pulse to control the oscillation unit to be adjusted to perform the frequency adjustment to the output pulse. The reference pulse required for adjusting the frequency can be generated by the reference oscillation unit integrated on-chip, so that self-adjustment can be achieved on-chip, decrease the cost of the chip compared with off-chip adjustment.
Abstract:
A master-slave flip-flop implemented in an integrated circuit comprises a master latch coupled to receive data at an input; and a slave latch coupled to an output of the master latch, wherein the slave latch comprises an SEU-enhanced latch, and the master latch is not enhanced for SEU protection. A method of implementing a master-slave flip-flop in an integrated circuit is also described.