Abstract:
A disconnect switch (30, 30SA) is placed in circuit between a battery bank (12) and a distribution point (30B) for the entire electrical system load except the engine cranking motor (24). This allows the circuit between the battery bank and a cranking motor solenoid (22) that operates the cranking motor to be switch-free. A switch-free circuit allows a continuous cable to connect the battery bank to the cranking motor solenoid, significantly reducing the electrical resistance between the battery bank and the cranking motor solenoid.
Abstract:
A folding mobile communication terminal is provided with a contact for charging and a protective cover that covers the contact. The protective cover is connected to a coil spring and is movable. When the communication terminal is installed on a battery charger, the protective cover is pushed up by a convex portion of the battery charger, exposes the contact and enables the connection of the contact and a terminal of the battery charger. When the communication terminal is detached from the battery charger, the protective cover is returned to a position in which the protective cover covers the contact by the resilience of the coil spring.
Abstract:
Disclosed is a method of fabricating a rechargeable lithium battery and a rechargeable lithium battery fabricated by the same. In this method, an electrolyte is placed between a positive electrode and a negative electrode to prepare an electrode element, and the electrode element is pulse charged.
Abstract:
A battery charging system includes a first charge source for connection to a first engine and at least a second charge source for connection to at least a second engine. A first battery is connected to the first charge source. At least a second battery is connected to the second charge source. At least a third battery is provided and is connected to a load. A switch is adapted in the first mode of operation to connect the third battery to the first charge source, and in a second mode of operation to connect the third battery to the second charge source. In a third mode of operation, the switch can isolate the third battery from the first and second charge sources as a fail-safe, and provide an alarm of this status. The invention is particularly adapted for use in marine vessels to prevent start batteries from discharging to a point where the voltage is insufficient to start an engine. A switch assembly and a method according to the invention are also disclosed.
Abstract:
A battery adapter (A) replaces two batteries (10) with a single battery (10) housed within a compartment (48) of a battery powered electrical device (D). An electrically conductive housing (40) adapted to replicate a selected battery and fit within a space adapted to house two of the selected sized batteries. A step up circuit (18) mounted within the battery housing (40) receives an electrical signal from a single battery (10) and transforms the voltage of the electrical signal to simulate an electrical signal from two electrically connected selected batteries (10).
Abstract:
Storage/discharge device integral with a low impedance current pool compartment is meant for application in common primary cell or secondary rechargeable cell or fuel cell, or still in a capacitor or super capacitor, otherwise similar charging/discharging device, and the electrode boards feature one or more current pool means to yield multiple confluent current paths, characterized in that by connecting in parallel current pool terminals of identical voltage rating and of electrode boards of like polarities from tanks of like polarities or from tanks of dissimilar polarities, or alternatively by series connection or compound serial/parallel combination of current pool terminals way between electrode boards of dissimilar polarities a low impedance structure for input/output current pool is achieved on the exteriority of the positive or negative polarity electrode boards on both sides of individually installed electrode tanks.
Abstract:
A battery pack having a first secondary cell and a second secondary cell, preferably of a non-aqueous chemistry, is described. Each secondary cell has a discharge capacity and an internal resistance to a direct charge current. To diminish and alleviate problems associated with extended cycling of battery packs, the internal resistance to the direct charge current and the discharge capacity of each secondary cell is substantially matched. Thereby, the battery packs have longer running voltages and increased energy density.
Abstract:
A battery charger charges a plurality of battery portions (204-214) connected in series with one another, a battery portion comprising at least one cell. The battery charger includes a battery portion charger (100) having an output that is electrically floating with respect to a DC power source utilized to power the battery portion charger. The battery portion charger is arranged to be coupled in parallel with a corresponding one of the plurality of battery portions. The battery charger also includes a controller (232) for controlling the battery portion charger.
Abstract:
A semiconductor integrated circuit includes two power supply lines and at least one electronic circuit connected to each of the power supply lines. One of the two power supply lines is connected with an externally located main power source, and the other power supply line is connected with an externally located backup power source. A switch electrically connects or disconnects the power supply lines with each other. A power supervisory circuit monitors voltage of the main power source and controls the switch. The switch is controlled so that power from the main power source is supplied to the electronic circuits when the main power source is operating normally, and power from the backup power source is supplied to the electronic circuits when the main power source has a failure.
Abstract:
In a device for generating electrical power with the fuel cell in a vehicle, a temporary power storage supplies power for a battery start, is charged when the fuel cell is operating, outputs power to connected loads of the fuel cell power system when there is an increased power demand, and absorbs power during braking.