摘要:
According to the present invention, laser performance is improved by appropriately matching the spectral periods of various etalons within the laser cavity. A first embodiment of the invention is a discretely tunable external cavity semiconductor laser where a grid fixing etalon is present in the laser cavity, the grid fixing etalon free spectral range (FSR) is a whole number multiple of the laser cavity FSR, and the grid fixing etalon FSR is a whole number multiple of the chip etalon FSR. A second embodiment of the invention is a fixed wavelength external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR, and a mode suppressing etalon is inserted into the laser cavity such that the mode suppressing etalon FSR is a whole number multiple of the chip etalon FSR. A third embodiment of the invention is a tunable external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR. A fourth embodiment of the invention is a fixed wavelength external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR.
摘要:
The method and system operate to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM) and to lock the laser to a selected transmission wavelength. In one example, the transmission laser is a widely tunable laser (WTL) to be tuned to one of a set of International Telecommunications Union (ITU) transmission grid lines for transmission through an optic fiber. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by an etalon fringe detector. Another portion of the beam is routed directly to a laser wavelength detector. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift in the etalon. In one example, the optical components are aligned so that laser wavelength detector receives a portion of the laser beam directly from the laser so that phase characteristics of the laser beam are not affected by an intervening beamsplitter thereby permitting improved wavelength locking. In another embodiment, an etalon chirp filter is provided for reducing or eliminating optical frequency chirp, regardless of the particular ITU channel being used for transmission.
摘要:
An arrayed-waveguide grating (AWG) is provided in a tunable mode-locked laser resonator where when a clock signal corresponding to a predetermined wavelength is input, the arrayed-waveguide grating (AWG) generates an output signal having an oscillation wavelength which has an arbitrary wavelength interval independent of the wavelength of said clock signal and a different propagation delay for each wavelength. Furthermore, a transmitter and a wavelength converter is provided that uses a tunable mode-locked laser where the frequency of the clock signal determines the wavelength and where a transmitted data signal at a fixed data rate is generated by setting the clock signal frequency sufficiently higher than the data rate. Furthermore, a wavelength converter and wavelength router is provided that uses said tunable mode-locked laser and in which the output wavelength is determined by extracting said clock signal from the input data signal. Furthermore, a transmission system is provided that uses said transmitter and/or said wavelength converter, and a receiver that recovers the envelope of said transmitted data signal.
摘要:
A mode locked semiconductor laser that can generate relatively high-power output pulses. The semiconductor mode locked laser is formed from an array of optical amplifiers that are coupled to a common resonant cavity by way of an optical channelizer or wavelength division multiplexer (WDM). By utilizing an array of optical amplifiers, the output pulses will have a relatively higher power than known mode locked lasers. As such, the mode locked semiconductor laser in accordance with the present invention does not depend on the power handling capability of the individual optical amplifiers and allows the average output power to be scaled, for example, up to the kilowatt range using semiconductor optical amplifiers. A mode locked laser in accordance with the present invention can be implemented with active mode locking, passive mode locking or a hybrid of the two. In embodiments utilizing active mode locking, the output pulse shape can be tailored by the amplifier drive current distribution.
摘要:
An injection locking system for lasers. In particular, a signal from a master laser is phase modulated and injected into a slave laser. The phase difference &phgr; is maintained at zero by way of a phase locked loop. By maintaining the phase difference &phgr; at zero, the frequency drift is compensated by maintaining the frequency within a predetermined locking range.
摘要:
A solid state laser includes a high absorption coefficient solid state gain medium such as Nd:YVO4 that is side pumped with a semiconductor laser diode array. The resonant cavity of the solid state laser is positioned so that the TEM00 mode is spaced from the face of the laser through which the laser is pumped by a distance sufficient to reduce diffraction losses but sufficiently near to allow coupling of pump light into the gain mode. The gain medium, the doping level of the gain medium, and the operating temperature of the pump laser are selected to efficiently couple pump light into the gain mode. The pump laser is positioned to side pump the gain medium without collimating or focusing optics between the pump laser and the face of the gain medium. A gap between the pump laser and the gain medium is empirically selected to match the angular extent of the pump laser output light to the height of the gain mode at the position of the gain mode fixed to optimize coupling and diffraction losses.
摘要:
The present invention relates to a wavelength-swept laser and a method for generating laser output. The wavelength-swept pulse laser according to one aspect of the present invention uses spontaneous mode-locking to produce a pulse output with the center wavelength continuously varying with time. On the contrary, the wavelength-swept laser according to another aspect of the present invention suppresses mode-locking to produce continuous output by tuning the filter frequency change speed to the frequency shift speed of the frequency shifter. The lasers of the present invention are applicable to optical sensing or WDM optical communication.
摘要:
A Laser arrangement (1) comprising a pump unit (2) containing a pumped laser crystal (3), and means, such as a saturable absorber (15), for passive mode-locking, wherein two separate, alternatively switchable resonator arms (11, 12) are provided, one resonator arm (11) of which, which is active in a pulse forming phase (21), comprises the saturable absorber (15), whereas the other resonator arm (12), which is active in an amplifying phase (22), is free from components that introduce losses.
摘要:
Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
摘要:
Microwaves are generated by heterodyning the outputs of two or more optical lasers which have differing central frequencies to produce beat frequencies in the microwave range. One of the beat frequencies is used to modulate the output of at least one of the lasers so as to produce sidebands which differ from the central frequency by an integral number of the sideband frequency. Each laser is connected to one of the other lasers by a weak optical link to optically injection lock the laser to the sideband of the other laser.