Abstract:
A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.
Abstract:
An apparatus comprises a photonic oscillator circuit configured to generate optical signals that are separated by a uniform delay; radio frequency (RF) generating circuitry configured to receive the optical signals and produce a series of reference clock signals having a same clock signal frequency, wherein each reference clock signal in the series includes a uniform delay from a previous clock signal in the series; and a plurality of analog-to-digital converter (ADC) circuits, wherein an ADC circuit includes a signal input to directly receive an RF input signal that is continuous in time and amplitude, and a clock input to receive a reference clock signal of the repeating series of reference clock signals, wherein the ADC circuits are configured to sample a RF input signal at the frequency of the reference clock signal with the uniform delay to sample interleaved digital values representing the RF signal.
Abstract:
An apparatus and method for stabilizing an output of a laser is provided. An optical amplifier oscillates light having a first wavelength band. A filter filters the light having the first wavelength band to output light having a second wavelength band narrower than the first wavelength band. The light having the second wavelength band may correspond to an output of a laser. To stabilize the wavelength center of the output laser, at least a portion of the light having the second wavelength band may be transferred to a fiber Bragg Grating (FBG) through a coupler. By performing feedback of a difference between the signal output from the FBG and a laser modulation signal, an offset corresponding to a lead zirconate titanate (PZT) operating parameter of a Fabry-Perot filter may be controlled to automatically stabilize the wavelength center.
Abstract:
A manufacturing method of an atom oscillator (an example of a quantum interference device) includes assembling the atom oscillator (an example of the quantum interference device) by respectively disposing a gas cell, a semiconductor laser, a light detector, ICs of a circuit unit, heaters, and coils at desired locations, and adjusting at least one of currents which flow through the coils, and positions and shapes of the coils such that a frequency-temperature characteristic of a pair of resonance light beams becomes approximately flat.
Abstract:
A system for distributing a reference oscillator signal includes a clock having a reference oscillator and a femtosecond laser stabilized by the reference oscillator. The system also includes at least one beamsplitter configured to split the femtosecond laser. The system further includes one or more remote nodes that are spaced from the clock. The remote nodes are configured to generate reference signals based on the split femtosecond laser.
Abstract:
Devices and techniques for locking a laser in frequency by locking a reference laser to a reference frequency and an optical interferometer to the reference laser and by locking the laser to a selected frequency produced by the optical interferometer.
Abstract:
A tunable laser cavity utilizes a dispersion compensated acousto-optic tunable filter. The wavelength accuracy and stability is achieved by a wavelength locker utilizing two separate intracavity light beams without the need to use beam splitters to significantly reduce the space typically needed by a conventional wavelength locker, and provide more stable operation and easy assembly. The acoustic optical tunable filter is constructed in such a way that two transducers are bonded on the same crystal opposite to each other to create two counter propagating acoustic waves. Dispersion occurs after the collimated light diffracted by the first acoustic wave and is compensated by the second acoustic wave traveling in the opposite direction. By using different laser gain mediums, acoustic wave driving frequencies and acousto-optical crystals, this invention can be used to make tunable lasers in wide range of optical wavelengths.
Abstract:
A wavelength locker for use at more than one wavelength includes filters with different characteristics for a corresponding detector. The filters may be etalons having different free spectral ranges, e.g., having different apparent or real thicknesses. If more than three such filters are used outputting offset periodic signals, a reference detector may be eliminated and continuous operation over a wavelength range may be realized.
Abstract:
Method and apparatus are disclosed that enable lasers to be stabilized in frequency to a high precision while simultaneously enabling rapid re-acquisition of stabilization control loops in the event of frequency locking loss. The principle of operation is to incorporate two etalons, one having a high finesse for frequency high stability, and one having a low finesse for wide error signal locking range, and electronics that pass control between two control systems in such a manner that any loss of frequency locking is rapidly re-acquired.
Abstract:
A method for operating an excimer or molecular fluorine laser system at a stabilized wavelength includes generating a laser beam and directing a beam portion through a wavelength measurement system, calibrating the wavelength measurement system to an absolute reference, determining the wavelength of the laser beam including figuring in a drift compensation value of the wavelength, and tuning the wavelength to a target wavelength when the determined wavelength differs from the target wavelength.