摘要:
Two aspects, an impurity factor and a structural factor are assumed as the deterioration causes of an organic light emitting device and means for solving the respective factors are provided. In order to prevent deterioration of the light emitting device, concentrations of moisture and oxygen, which are left in a space in which an organic light emitting element is sealed, are minimized. At the same time, an impurity including oxygen, such as moisture or oxygen which is included in an organic compound composing the organic light emitting element, is reduced. An element structure for preventing the deterioration of the organic light emitting element due to stress is used to suppress the deterioration.
摘要:
The memory cell or the memory array formed of such memory cells has different molecular or polymeric layers forming an electrochemical redox pair. A matrix acting as proton donors or acceptors is provided in the two different molecular or polymeric layers. If a corresponding voltage is applied between mutually crossing upper and lower interconnects, one layer of their molecules emits electrons to the interconnect. As a result the molecules are oxidized. At the same time, electrons flow from the other interconnect into the molecules of the other polymer layer. As a result the molecules of that layer are reduced. Charge transport is balanced by proton flow, so that the oxidation state of the two layers is stabilized. If the voltage polarity is reversed, the memory cell is rewritten to the initial form. The memory array is suitable where the number of read-outs significantly exceeds the number of write operations, for example in smart cards.
摘要:
Provided is an organic electroluminescent (EL) device including a substrate, a transparent electrode formed on the substrate, an organic light-emitting layer formed on the transparent electrode, a metal electrode formed on the organic light-emitting layer, a first insulating layer formed on the metal electrode, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, an organic semiconducting layer formed on the second insulating layer, a source electrode connected to one end of the organic semiconducting layer on the second. insulating layer and connected to the metal electrode, and a drain electrode connected to the other end of the organic semiconducting layer on the second insulating layer.
摘要:
A hybrid organic-inorganic semiconductor device is provided as a sensor for chemicals and light, said device being composed of: (i) at least one layer of a conducting semiconductor such as doped n-GaAs or n-(Al,Ga)As; (ii) at least one insulating layer such as of an undoped semiconductor; e.g. GaAs or (Al,Ga)As; (iii) a thin layer of multifunctional organic sensing molecules directly chemisorbed on one of its surfaces, said multifunctional organic sensing molecules having at least one functional group that binds to said surface and at least one another functional group that serves as a sensor; and (iv) two conducting pads on the top layer making electrical contact with the electrically conducting layer, so that the electrical current can flow between them at a finite distance from the surface of the device. The surface-binding functional group of the multifunctional organic sensing molecule may be one or more aliphatic or aromatic carboxyl, thiol, sulfide, hydroxamic acid or trichlorosilane groups. The functional group that serves as a sensor may be a group suitable for binding and detection of metal ions such as Cu2+, Fe2+ and Ru2+ such as radicals derived from hydroxamic acids, bipyridyl, imidazol and hydroxyquinoline, or a group that is an efficient light absorber at a given wavelength and is suitable for detection of light such as radicals derived from aliphatic or aromatic hydroxamates, substituted aromatic groups such as cyanobenzoyl and methoxybenzoyl, bipyridyl, hydroxyquinoline, or imidazolyl groups to which a metal porphyrin or a metal phtalocyanin residue is attached.
摘要:
An organic electronic device structure, according to a first aspect of the invention, includes: (a) a substrate layer; (b) an organic electronic region disposed over the substrate layer; (c) a pressure sensitive adhesive layer disposed over the organic electronic device; and (d) a barrier layer disposed over the adhesive layer. According to a second aspect of the present invention, an organic electronic device structure includes: (a) a substrate layer; (b) an organic electronic region disposed over the substrate layer; (c) a barrier layer disposed over the organic electronic region; (d) a pressure sensitive adhesive layer disposed over the substrate layer and over the barrier layer; and (e) an additional layer disposed over the adhesive layer. In many preferred embodiments, the organic electronic device region is an OLED region.
摘要:
An organic TFT including an organic film, first and second electrodes each disposed in contact with opposite surfaces of the organic film each other; and a third electrode disposed at a specified distance from each of the first and second electrodes, the third electrode being applied with a voltage to control current flowing from one of the first and the second electrodes to the other through the organic film; and the organic film including a compound represented by general formula [1]. In this TFT, the carrier moves from one of the first and the second electrodes to the other in the direction of the film thickness of the organic film. The device structure realizes the enough short channel length. The organic film provides the higher mobility, thereby the organic TFT with the sufficiently higher speed response is realized.
摘要:
Disclosed is an OLED device comprising a light-emitting layer containing a host and a dopant where the dopant comprises a boron compound complexed by two ring nitrogens of a deprotonated bis(azinyl)amine ligand.
摘要:
This invention relates to organic based spintronic devices, and electronic devices comprising them, including spin valves, spin tunnel junctions, spin transistors and spin light-emitting devices. New polymer-, organic- and molecular-based electronic devices in which the electron spin degree of freedom controls the electric current to enhance device performance. Polymer-, organic-, and molecular-based spintronic devices have enhanced functionality, ease of manufacture, are less costly than inorganic ones. The long spin coherence times due to the weak spin-orbit interaction of carbon and other low atomic number atoms that comprise organic materials make them ideal for exploiting the concepts of spin quantum devices. The hopping mechanism of charge transport that dominates in semiconducting polymers (vs. band transport in crystalline inorganic semiconductors) enhances spin-magneto sensitivity and reduces the expected power loss.
摘要:
A unimolecular electrical rectifier is prepared by forming a metal electrode on a substrate such as silicon, glass or quartz. One or more organic monolayers are formed on the electrode by Langmuir-Blodgett film transfer methods, and the resulting organic layer is dried. The organic layer is super cooled to a temperature of about −200° C., to permit formation of a second electrode over the organic layer, without damaging the electrical properties of the organic layer. The two electrodes have the same composition, and the organic layer is a ground stage zwitteronic compound.
摘要:
An organic light-emitting device with improved performance including an anode formed over a substrate; a light-emitting layer formed over the anode for producing light in response to hole-electron recombination; and a performance-enhancing layer formed over the light-emitting layer including one or more chemical reducing materials selected to improve the performance of the organic light-emitting device. The device also includes an electron-transporting layer formed over the performance-enhancing layer, and a cathode formed over the electron-transporting layer.