Abstract:
An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.
Abstract:
A dye-sensitized solar cell including a polymer electrolyte gel having a poly(vinylidene fluoride) (PVDF) polymer is provided. The dye-sensitized solar cell includes a semiconductor electrode, an opposed electrode, and a polymer electrolyte gel interposed between the semiconductor electrode and the opposed electrode while including poly(vinylidene fluoride) (PVDF) polymer or the copolymer thereof. Here, the polymer electrolyte gel is formed of a N-methy-2-pyrrolidone solvent or a 3-methoxypropionitrile (MP) solvent and the PVDF polymer or the copolymer thereof which is dissolved in the solvent to a predetermined amount.
Abstract:
A method for producing a photoelectric conversion device comprising a conductive support and a photosensitive layer containing a semiconductor fine particle on which a dye is adsorbed, wherein the semiconductor fine particle is treated with a compound represented by the following general formula (I): wherein X represents an oxygen atom, a sulfur atom, a selenium atom or NY, in which Y represents a hydrogen atom, an aliphatic hydrocarbon group, a hydroxyl group or an alkoxy group; R1, R2, R3 and R4 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, a heterocyclic group, —N(R5)(R6), —C(═O)R7, —C(═S)R8, —SO2R9 or —OR10; R5 and R6 independently have the same meaning as the R1, R2, R3 and R4; R7, R8 and R9 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, a heterocyclic group, —N(R5)(R6), —OR10 or —SR11; and R10 and R11 independently represent a hydrogen atom or an aliphatic hydrocarbon group.
Abstract translation:一种光电转换装置的制造方法,其特征在于,包括导电性支持体和含有吸附有染料的半导体微粒的感光层,其中,所述半导体微粒用下述通式(I)表示的化合物进行处理:其中X 表示氧原子,硫原子,硒原子或NY,其中Y表示氢原子,脂族烃基,羟基或烷氧基; R1,R2,R3和R4独立地表示氢原子,脂族烃基,芳基,杂环基,-N(R5)(R6),-C(= O)R7,-C(= S)R8 ,-SO 2 R 9或-OR 10; R5和R6独立地具有与R1,R2,R3和R4相同的含义; R7,R8和R9独立地表示氢原子,脂族烃基,芳基,杂环基,-N(R5)(R6),-OR10或-SR11; R 10和R 11独立地表示氢原子或脂肪族烃基。
Abstract:
The invention includes a tile main body, a recess formed in the tile main body for receiving a photovoltaic module having its reverse surface provided with a terminal box, and a terminal-box-receiving recess provided at the bottom of the recess for receiving the terminal box. A cable lead-out section is provided at a portion toward a ridge of a roof. Output lead-out cables connected to the terminal box are led from the lead-out section toward the ridge.
Abstract:
A photovoltaic cell module tile that includes a tile body, a recess, a fitting section, and a pressure member. The recess is provided in a top surface of the tile body, which stores a photovoltaic cell module. The fitting section is provided in the recess on an eaves side of the tile body. An eaves-side end portion of the photovoltaic cell module is inserted and fitted in the fitting section. The pressure member is provided on a ridge side of the tile body and presses a ridge-side end portion of the photovoltaic cell module against the tile body.
Abstract:
A solar cell including a semiconductor substrate of a first conductive type; a first region of a second conductive type provided on a surface of the substrate; and a bypass function region including a second region of a second conductive type provided on the surface of the substrate and spaced a predetermined distance from the first region, and a third region for setting the substrate and the second region at the same potential; wherein when a reverse voltage is applied between the substrate and the first region, the bypass function region forms a bypass circuit between the substrate and the first region using a depletion layer formed inside the substrate by the reverse voltage.
Abstract:
In a photovoltaic element sequentially comprising at least an amorphous semiconductive layer of one conductivity type and an amorphous semiconductive layer of the other conductivity type on a surface of a transparent conductive film, the transparent conductive film includes a surface region having a lower crystalline property on a surface side than that in an inner portion and the amorphous semiconductive layer of one conductivity type is formed on the surface region. An excellent ohmic property is obtained between the transparent conductive film and the amorphous semiconductive layer of one conductivity type.
Abstract:
The present invention prevents an increase in an overvoltage and increases an optimum operating voltage of a power inverter. A photovoltaic power generation device is provided with a solar cell device 1, a power inverter 2 for inverting output from the solar cell device 1 into AC power, a current path circuit 3 connected in parallel between the solar cell device 1 and the power inverter 2, and a current detection circuit 4 for detecting a current feeding back to the solar cell device 1. When a current detected by the current detection circuit 4 reaches beyond a predetermined current value, the current path circuit 3 is cut off.
Abstract:
A thin-film solar cell including a transparent electrode layer, a semiconductor photovoltaic conversion layer, a rear transparent electrode layer and a rear reflective metal layer, said layers being formed in this order on a transparent substrate, wherein the rear transparent electrode has a two-layer structure of an ITO or ZnO:Ga layer and a ZnO:Al layer formed in this order on the semiconductor photovoltaic conversion layer.
Abstract:
A method and an apparatus for shaping semiconductor surfaces, in which a semiconductor wafer with a surface to be shaped is clamped in-between two plates. In which case at least one plate has a negative form with respect to the desired form to be formed in a semiconductor surface and the semiconductor surface is pressed by the plates at an elevated temperature. The method can be used particularly advantageously for fabricating concave microlens structures in semiconductor surfaces.