摘要:
A method of bonding and packaging components of Micro-Electro-Mechanical Systems (MEMS) and MEMS based devices using a Solid-Liquid InterDiffusion (SLID) process is provided. A micro-machine is bonded to a micro-machine chip using bonding materials. A layer of chromium is first deposited onto surfaces of the micro-machine and the micro-machine chip followed by a layer of gold. Subsequently, a layer of indium is deposited between the layers of gold, and the surface of the micro-machine is pressed against the surface of the micro-machine chip forming a gold-indium alloy to serve as a bond between the micro-machine and the micro-machine chip. In addition, a cover is bonded to the micro-machine chip in the same manner providing a hermetic seal for the MEMS based device.
摘要:
A detector includes a voltage source for providing a bias voltage and first and second non-insulating layers, which are spaced apart such that the bias voltage can be applied therebetween and form an antenna for receiving electromagnetic radiation and directing it to a specific location within the detector. The detector also includes an arrangement serving as a transport of electrons, including tunneling, between and to the first and second non-insulating layers when electromagnetic radiation is received at the antenna. The arrangement includes a first insulating layer and a second layer configured such that using only the first insulating in the arrangement would result in a given value of nonlinearity in the transport of electrons while the inclusion of the second layer increases the nonlinearity above the given value. A portion of the electromagnetic radiation incident on the antenna is converted to an electrical signal at an output.
摘要:
A suspended semiconductor film is anchored to a substrate at at least two opposed anchor positions, and film segments are deposited on the semiconductor film adjacent to one or more of the anchor positions to apply either tensile or compressive stress to the semiconductor film between the film segments. A crystalline silicon film may be anchored to the substrate and have tensile stress applied thereto to reduce the lattice mismatch between the silicon and a silicon-germanium layer deposited onto the silicon film. By controlling the level of stress in the silicon film, the size, density and distribution of quantum dots formed in a high germanium content silicon-germanium film deposited on the silicon film can be controlled.
摘要:
In some embodiments of the present invention, an apparatus includes an electromagnetic shielding structure. The electromagnetic shielding structure is formed at least partially in one or more redistribution layers formed on an integrated circuit die. The electromagnetic shielding structure substantially surrounds a circuit element, such as an inductor structure. The circuit element may be formed at least partially in the one or more redistribution layers. An inductor structure may be constructed as a loop structure at least partially in one or more redistribution layers formed on the integrated circuit die. The shielding structure may be formed at least partially in one or more redistribution layers of the integrated circuit die to enclose the inductor in a Faraday cage-like enclosure. The redistribution layers may be formed above integrated circuit pads or above a passivation layer of the integrated circuit die.
摘要:
A capacitive dynamic quantity sensor includes a substrate, a weight, a movable electrode, an anchor, a fixed electrode, a spring, and a strain buffer. The weight is displaced by a dynamic quantity. The movable electrode is integrated with the weight. The anchor is fixed to the substrate to suspend the weight and the movable electrode above the substrate. The fixed electrode is arranged to face the movable electrode. The displacement of the movable electrode caused in response to the dynamic quantity is detected as a capacitance variation between the electrodes. The spring is located between the anchor and the weight and resiliently deforms in response to the dynamic quantity such that the movable electrode is displaced by a distance corresponding to the dynamic quantity. The strain buffer is located between the anchor and the spring to reduce the influence of a strain generated in the substrate on the spring.
摘要:
A micromechanical switch comprises a substrate, at least one pair of support members fixed to the substrate, at least one pair of beam members placed in proximity and parallel to each other above the substrate, and connected to one of the support members, respectively, each of the beam members having a moving portion which is movable with a gap with respect to the substrate, and a contact portion provided on the moving portion, and a driving electrode placed on the substrate between the pair of beam members to attract the moving portions of the beam members in a direction parallel to the substrate with electrostatic force so that the contact portions of the beam members which are opposed to each other are short-circuited.
摘要:
The present invention relates to a silicon pressure sensor that in need of three strips of piezoresistors on each side and the manufacturing method thereof; wherein, the impurity concentration of the piezoresistors are about 1019-1020 cmnull3 in order to reduce the influence of temperature; the lead between the piezoresistors (namely the internal connection lead) is a highly-doping interconnect (about 1021 cmnull3) fabricated along the direction with minimum piezoresistance coefficient; with regard to the connection circuit for connecting the piezoresistors with the external Wheatstone bridge circuit (namely the external connection circuit), of which one end near the inner side of the membrane is also fabricated along the direction with minimum piezoresistance coefficient, and another end of the lead near the edge of the membrane is a interconnect that is perpendicular to the diaphragm, and is connected out to the external circuit; with this structure, the four resistors of the Whetstone bridge are balanced and symmetrized, thus the zero offset caused by the variations in resistance of the bridge can be reduced in order to simplify the signal-processing circuit.
摘要翻译:硅压力传感器及其制造方法技术领域本发明涉及一种硅压力传感器及其制造方法,所述硅压力传感器在每侧需要三条压敏电阻片; 其中为了降低温度的影响,压敏电阻的杂质浓度为约10〜10 20 cm -3 -3。 压敏电阻器之间的引线(即内部连接引线)是沿着具有最小压阻系数的方向制造的高度掺杂的互连(约10 21 cm -3); 关于将压电电阻与外部惠斯通电桥电路(即外部连接电路)连接的连接电路,其膜的内侧附近的一端也沿着具有最小压阻系数的方向制造,另一端 膜边缘附近的引线是与隔膜垂直的互连线,并连接到外部电路; 通过这种结构,Whetstone桥的四个电阻器被平衡和对称化,因此可以减小由桥的电阻变化引起的零点偏移,以简化信号处理电路。
摘要:
One embodiment of the present invention relates to a lateral-contact microrelay with an electro-thermal actuator. This microrelay includes a contact head configured to make an electrical connection between a first signal line and a second signal line. It also includes an electro-thermal actuator, which is coupled to the contact head and is configured to laterally displace the contact head so that the closing action of the contact head is parallel to the plane of the semiconductor wafer upon which the microrelay is fabricated. In a variation on this embodiment, the electro-thermal actuator comprises a substantially V-shaped beam, wherein thermal expansion caused by current flowing through the substantially V-shaped beam actuates the contact head to make the electrical connection between the first signal line and the second signal line.
摘要:
Semiconductor devices containing a MOSFET and an on-chip current sensor in the form of a magnetic resistive element are described. The magnetic resistive element (MRE) is proximate the MOSFET in the semiconductor device. The current flowing through the MOSFET generates a magnetic field that is detected by the MRE. The MRE comprises a metal film that is placed proximate the MOSFET during the normal fabrication processes, thereby adding little to the manufacturing complexity or cost. Using the MRE adds an accurate, effective, and cheap method to measure currents in MOSFET devices.
摘要:
A method and structure for a spin valve transistor (SVT) comprises a magnetic field sensor, a first insulating layer adjacent the magnetic field sensor, a bias layer adjacent the insulating layer, a second insulating layer adjacent the bias layer, and a ferromagnetic layer over the second insulating layer, wherein the first insulating layer and the second insulating layer comprise antiferromagnetic materials. The magnetic field sensor comprises a base region, a collector region adjacent the base region, an emitter region adjacent the base region, and a barrier region located between the base region and the emitter region. The bias layer is between the first insulating layer and the second insulating layer. The bias layer is magnetic and is at least three times the thickness of the base region.