Abstract:
The present invention relates to photoconductive elements having an electrically conductive support, an electrical barrier layer and, disposed over the conductive layer, a charge generation layer capable of generating positive charge carriers when exposed to actinic radiation. The electrical barrier layer, which restrains injection of positive charge carriers from the conductive support, comprises a crosslinkable condensation polymer having as a repeating unit a planar, electron-deficient, tetracarbonylbisimide group and optionally a crosslinker,
Abstract:
This invention relates to x-ray imaging, especially to an imaging arrangement used in intra-oral x-ray imaging, to a wireless imaging sensor and to a base station for the sensor as well as to methods for supplying operating power to the sensor and transmitting information to the sensor and from the sensor wirelessly, in which invention such a wireless power transmission link is used, which is arranged to be used for supplying energy to the sensor in connection with the imaging process.
Abstract:
The present application relates to a method for concentrating an ink for an electrostatic printing process, wherein the method comprises the steps of: (a) providing the ink for an electrostatic printing process, the ink comprising chargeable particles in a liquid carrier; (b) passing the ink between a chargeable conveyor and a first electrode, wherein a potential is applied such that the ink becomes adhered to the chargeable conveyor; (c) passing the ink on the conveyor past a moving surface, wherein the ink contacts the moving surface and a potential is applied between the conveyor and the moving surface, such that the chargeable particles are disposed to move toward the conveyor and some of the liquid carrier is removed to increase the concentration of the chargeable particles in the liquid carrier on the conveyor to form a concentrated ink on the conveyor, the conveyor and the moving surface then diverging from one another, such that substantially all of the concentrated ink remains on the conveyor; (d) removing the concentrated ink from the conveyor and transferring it to a storage vessel. An apparatus for carrying out this method is also disclosed.
Abstract:
A charging apparatus includes a latent image bearing member having a charge generating layer for generating an electric charge by receiving light energy; a light source for emitting light energy for generating the electric charge in the charge generating layer; an electrode; a bias voltage applying portion for applying a bias voltage to the electrode; and an elastic member, which is insulative and transparent, for contacting the electrode to a surface of the latent image bearing member. The electric charge is generated in the charge generating layer by reception of the light energy emitted from the light source, and the surface of the latent image bearing member is electrically charged by applying the bias voltage from the bias voltage applying portion to the electrode. The electrode is provided on the elastic member and is contacted to the surface of the latent image bearing member in a contact area and does not extend to an outside of the contact area.
Abstract:
An object, typically photoconductor drum is electrically charged by placing a contact charger member in abutment with the object to be charged and applying voltage between the contact charger member and the object. Charging is effected by properly controlling the capacitance of the contact charger member, the capacitance of the object, and the applied voltage. A sufficient charged potential is achieved through the application of a relatively low voltage, while preventing ozone generation.
Abstract:
Radiation source and detector arrangement for a differential phase contrast CT scanner, in which the detector tiles are placed asymmetrically such that direct rays, which hit gaps between tiles are sampled by tile centers for the complementary rays. This may provide for good image quality without any approximate processing.
Abstract:
An image forming apparatus includes a charging unit, an image carrier, an exposing unit, a developing unit, a transfer belt on which the transfer material is placed, a fixing unit that fixes the toner image transferred onto the transfer material, a cleaning unit that cleans up toner attached to the fixing unit, and a control unit that controls printing of the image on the transfer material. The control unit causes the exposing unit to expose a latent image of a first image having an image-area ratio equal to or larger than a predetermined ratio, causes the developing unit to form a toner image of the latent image and to transfer the toner image to the transfer material, and causes the fixing unit to fix the toner image transferred by the transfer belt to the transfer material.
Abstract:
A method of manufacturing charge transporting materials which impart a charge transporting property to a polysiloxane resin, and which is soluble in the resin. The charge transporting material is an aromatic substituted tertiary amine with a plurality of aromatic groups, and a silyl group introduced via a hydrocarbon group, into at least one of the aromatic groups. The method is characterized by using an unsaturated aliphatic group bonded to an aromatic group which makes up the silicon-type charge transporting compound, or using a newly bonded unsaturated aliphatic group which is bonded to a silane in which the substituent for silicon is hydrogen or a hydrolyzable group. This is conducted in the presence of a platinum compound as catalyst by means of hydrosilylation. The silicon-type charge transporting material is then brought into contact with an adsorbent for the platinum compound, causing the platinum compound to be adsorbed onto the adsorbent. The platinum compound is removed along with the adsorbent, so that the concentration of residual platinum compound is less than 10 ppm.
Abstract:
An additive deposition system and method, the system including generating an aerosol of additive material that is charged and deposited onto a selectively charged substrate. Selectively charging the substrate includes uniformly charging a surface of the substrate, selectively removing charged from the substrate to create charged and neutral regions of the substrate surface. The charged regions of the substrate having a polarity opposite a polarity of the charged aerosol. The charged aerosol of additive material deposited onto the selectively charged portions of the substrate surface due to the potential difference between the charged substrate and charged aerosol. The system and method further including repeating the additive deposition process to create a multi-layer matrix of additive material.
Abstract:
A system for charging a photoconductive surface being suitable use in forming an image on a substrate, the system including: an at least partial vacuum chamber; at least one nanostructure being disposed within the vacuum chamber and suitable for emitting electrons; and, at least one cap disposed with respect to the at least one nanostructure such that electrons emitted from the at least one nanostructure and colliding with the cap cause radiation suitable for charging the photoconductive surface.