Abstract:
An optics system includes at least one emitting fiber tip that transmits a divergent beam. The divergent beam includes a global maximum intensify of radiation centered with an output optical axis. The divergent beam includes central beams for collimating and periphery beams for disposing. The periphery beams include parasitic radiation of the divergent beam. The optics system includes at least one collimating lens having an output size, output shape, and output optical axis centered thereto and configured to redirect the central beams to a target and redirect the periphery beams into free-space; and at least one redirecting element positioned in between the at least one emitting fiber tip and the at least one collimating lens. The redirecting element includes a first area having an interior size and interior shape to transmit the central beams, and at least one second area outside of the first area to transmit the periphery beams.
Abstract:
Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
Abstract:
An optical device includes a transparent substrate, a first replicated refractive surface on a first surface of the substrate in a first material, and a second replicated refractive surface on a second surface, opposite the first surface, and made of a second material, different from the first material. The material and curvature of the first replicated surface and the material and curvature of the second replicated surface may be configured to substantially reduce the chromatic dispersion and/or the thermal sensitivity of the optical device.
Abstract:
A variable magnification optical system of the present invention and an image pickup device and a digital apparatus including this are provided with a four-component optical system of negative-negative-positive-negative arrangement, wherein a first lens group thereof includes only one negative lens as a lens having an optical power, and a third lens group thereof satisfies a conditional expression of 1.4
Abstract:
A curable resin composition for a cemented lens capable of manufacturing a cemented lens excellent in heat resistance in reflowing treatment at a temperature of 260° C. or higher and adhesion between lenses, and capable of reducing manufacturing costs of lenses and capable of lightening lenses, is provided.The curable resin composition for a cemented lens includes: (a) a compound represented by the following formula (I); and (b) a radical polymerization initiator. wherein R1 represents a hydrogen atom or an alkyl group; and Z1 represents a cyclic structure together with two carbon atoms and a sulfur atom.
Abstract:
An optical device includes a transparent substrate, a first replicated refractive surface on a first surface of the substrate in a first material, and a second replicated refractive surface on a second surface, opposite the first surface, and made of a second material, different from the first material. The material and curvature of the first replicated surface and the material and curvature of the second replicated surface may be configured to substantially reduce the chromatic dispersion and/or the thermal sensitivity of the optical device.
Abstract:
A lens and a light emitting device package formed by introducing surface mount technology (SMT) are disclosed. The lens includes a refractive portion which refracts incident light, and at least one surface mount portion, wherein a portion of the surface mount portion is formed in the refractive portion.
Abstract:
A diffusing plate having a smooth rough surface is obtained by recording on a photosensitive material the image of a mask having a regular fine pattern thereon, treating the photosensitive material to thereby obtain a photosensitive material having smooth roughness, transferring the smooth roughness of the treated photosensitive material to a metal mold, and embossing plastics on the metal mold.
Abstract:
Disclosed herein are embodiments of a porous aluminum oxide thin film having a surface RMS roughness value of less than 1 nm. The thin film may also comprise phosphorus. The disclosed thin films may have a refractive index of from 1 to 2, such as from 1 to 1.5. Also disclosed are embodiments of as method for making the disclosed thin films, comprising forming an aqueous solution of the alumina precursor, a surfactant and optionally a phosphorus-containing precursor, and depositing the solution on a substrate.
Abstract:
Wafer-level optical elements and the concave spacer-wafer apertures in which they are formed are disclosed. The wafer-level optical elements include a spacer wafer comprising a plurality of apertures. Each aperture has a concave shape in a planar cross-section of the spacer wafer and an overflow region intersecting the planar cross-section. The wafer-level optical elements also include an array of optical elements, each optical element of the array being formed of cured flowable material within a respective one of the plurality of apertures. A portion of the cured flowable material forming each optical element extends into the overflow region of the respective aperture of the plurality of apertures. The spacer wafer includes a plurality of apertures, each of the plurality of apertures having a concave shape in a planar cross-section of the spacer wafer. Each of the plurality of apertures includes an overflow region intersecting the planar cross-section.