Abstract:
Embodiments of the present invention provide a method for detecting and measuring seat leakage in valves during air or gas seat tests. The method involves sealing the valve openings and filling the cavity on one side of the closed valve with water. Pressurized air or gas is introduced to the opposite side of the valve, causing any leaks in the valve closure to generate bubbles that displace water through a conduit, forming drops that are collected in a container. The leakage is quantified by counting the drops or measuring the water volume in a graduated container.
Abstract:
Provided is a soldering apparatus including: a furnace body including a processing chamber in which boards are processed; a gasket provided at least to a part of the furnace body, and configured to seal the furnace body; a sealed space isolated from the processing chamber, and defined by the furnace body and the gasket; a gas supply apparatus configured to supply a first gas into the sealed space; and a measuring apparatus configured to measure one of pressure in the sealed space and concentration of a second gas in the sealed space.
Abstract:
A test procedure for the testing liquid storage tanks, for leakage, comprises: immersing at least part of test equipment in the liquid in question and fixing the equipment in position with respect to the tank; allowing a quantity of the liquid in question to be admitted to a multiplier tube, until the level of liquid in the multiplier tube equates to that in the tank; isolating the liquid in the multiplier tube from that in the tank for an appropriate test period; introducing a predetermined measure (M) of liquid of the same nature as that in the tank into the test equipment to establish a recordable datum level removing the predetermined measure (M) of liquid from the test equipment; re-connecting the liquid in the multiplier tube with that in the tank; waiting a prescribed period of time; taking the same measure (M) of liquid and re-introducing this measured amount into the test equipment; and observing any fall of the meniscus of that measure from the previous datum level, which fall would indicate leakage from the tank. The invention also includes test equipment (9).
Abstract:
A method for detecting a gas tightness of a furnace tube device includes: providing a test wafer; conveying the test wafer into the furnace tube device; depositing a dielectric layer on the test wafer; measuring a thickness and a Goodness of Fit (GOF) of the dielectric layer formed on the test wafer by a thickness measuring machine; and judging the gas tightness of the furnace tube device according to the GOF.
Abstract:
A method for detecting a gas tightness of a furnace tube device includes: providing a test wafer; conveying the test wafer into the furnace tube device; depositing a dielectric layer on the test wafer; measuring a thickness and a Goodness of Fit (GOF) of the dielectric layer formed on the test wafer by a thickness measuring machine; and judging the gas tightness of the furnace tube device according to the GOF.
Abstract:
The invention relates in particular to a method of covering a duct for transporting or storing a fluid in a device for detecting a leak of the fluid, the device comprising a layer of insulating fibrous material arranged to surround the duct and a layer of conductive material that extends against the layer of insulating material, the conductive material being essentially constituted by fibers of carbon or graphite, wherein the layer of insulating material is secured to the wall of the duct by strapping ties around said layer.
Abstract:
Hydrogen leakage from a generator core through stator windings into the generator coolant water is measured by flowing air into the coolant water exiting the stator windings and measuring the hydrogen content of the gas vented from a coolant water reservoir. The flow of air into the coolant water also oxygenates the coolant water to prevent undesirable formation of less stable cuprous oxide layers and enhance the formation of a protective cupric oxide film on the inside surfaces of the copper stator windings. In another form, trace gas is introduced into one of the generator core environment and the coolant water and a detector measures the magnitude of the trace gas leaked between the generator core environment and the coolant water as an indication of the magnitude of hydrogen leakage escaping from the generator core into the stator water coolant system.
Abstract:
A leak detector includes an air tight chamber having three openings therein. The first opening is connected to a source of compressed air or other gas. The second opening is provided to the fill pipe of a tank to be tested for leaks. The third opening is connected to a slope tube which is calibrated to detect changes in the height of a column of liquid in a slope tube. When pressure is applied to the chamber from the source of compressed air, bubbles are forced into the fill pipe. A corresponding pressure creates and maintains a column of liquid in the slope tube. Changes in the level of the fluid in the tank due to leakage result in a corresponding change in the level of fluid in the slope tube.
Abstract:
Provided is a soldering apparatus including: a furnace body including a processing chamber in which boards are processed; a gasket provided at least to a part of the furnace body, and configured to seal the furnace body; a sealed space isolated from the processing chamber, and defined by the furnace body and the gasket; a gas supply apparatus configured to supply a first gas into the sealed space; and a measuring apparatus configured to measure one of pressure in the sealed space and concentration of a second gas in the sealed space.
Abstract:
Aspects and techniques of the present disclosure relate to a process of evaluating a pressurized fluid system including an automatic bleed valve arrangement therein for undesirable air leakage by diagnostically operating the automatic bleed valve arrangement. The disclosure also relates to methods of evaluating air presence in a pressurized fluid system sufficient to warrant bleed valve operation. Further, apparatus and features thereof are characterized.