Abstract:
Systems and methods for evaluating the performance of three-dimensional (3D) sensors can include, for example, obtaining, via a 3D sensor in a testing apparatus, range information of a scene within a field-of-view (FOV) of the 3D sensor. The scene includes a plurality of targets disposed within the testing apparatus. Each of the plurality of targets is located at a different distance from the 3D sensor in the testing apparatus. A validation of the performance of the 3D sensor at the different distances is performed at a same point in time, based on the range information. An indication of a result of the validation is provided.
Abstract:
A height measuring apparatus comprising a main body portion adapted for placement upon an object to be measured, and a movable portion which is movable relative to the main body portion, wherein the movable portion comprises a laser source and a photo detector, the movable portion being movable so that a laser beam from the laser source can be directed to the ground when the main body is placed on the object to be measured.
Abstract:
The purpose of this disclosure is to easily calculate draft information with a simple configuration. The draft information generation device (10) comprises multiple range-finding sensors (20) and an information processor module (30). The range-finding sensor (20) is mounted on the side of a vessel (80) and measures the distance to water surface (91) using a range-finding signal. The information processor module (30) calculates draft height Hdr using the distance to the water surface (91) and the mold depth Hmd of the vessel (80).
Abstract:
The present technology relates to an imaging control device and method, and a vehicle that enable distance measurement with higher accuracy. An imaging control unit controls imaging by a stereo camera system including at least a set of cameras arranged in a vertical direction, the set of cameras including at least one camera arranged to have an optical axis directed obliquely downward, and a monitoring processing unit performs monitoring processing on the basis of an image captured by the stereo camera system. For example, distance measurement processing is performed on the basis of an image captured by at least the set of cameras arranged to have at least one optical axis directed obliquely downward on a side surface of the vehicle. The present technology can be applied to driving assistance of a vehicle.
Abstract:
Provided is a method for measuring the heights of components based on laser ranging, including the following steps of: 1) a laser ranger uniformly moving along a test route and measuring the distance from each test point to the laser ranger; 2) the laser ranger transmitting the measurement result and the measurement time to a storage unit; 3) the storage unit sending the received measurement result and the received measurement time to an analysis unit; and 4) according to the data sent by the storage unit and referring to the test route and the position of each test point, the analysis unit calculating the height of each test point and outputting it. The method of the present invention omits the time of determining the position of each point and the start-stop time of the laser ranger at each test point so that saving the large amount of the measurement time.
Abstract:
A detection sensor to detect a receiving position of laser light according to the present invention includes a pair of light receiving element arrays (11X and 11Y), wherein adjacent light receiving elements (PDXi) are positioned as spaced equidistantly from one another and are mutually connected via a resistor (RXj), and wherein the output lines (11a and 11b) are respectively connected to the light receiving elements that are present at both ends of the respective light receiving element arrays (11X and 11Y). The light receiving element arrays (11X and 11Y) configure a composite array wherein the light receiving elements of a first light receiving element array are respectively positioned between the mutually adjacent light receiving elements of a second light receiving element array. When the laser beam makes contact with any of the light receiving elements, an analysis arithmetic device derives the position whereupon the laser beam is received, by performing a computation in accordance with the output that is obtained from each respective output line.
Abstract:
Combined laser-based apparatus for determining both altitude and ground velocity of an aircraft comprises: a laser source for emitting pulsed laser beams substantially at a predetermined wavelength; a plurality of first optical elements for directing the laser beams from a first optical path to a second optical path which exits the first optical elements; a plurality of second optical elements configured to form a telescope, the second optical path and telescope field of view being fixedly co-aligned; an optical scanner for directing the second optical path and telescope field of view to desired ground positions while maintaining the co-alignment thereof; the telescope for receiving Doppler wavelength shifted reflections of the pulsed laser beams and directing the received ground reflections substantially over a third optical path; an optical filter element for separating the ground reflections of the third optical path into first and second portions that are dependent on the Doppler wavelength shift of the ground reflections; and processing means for determining altitude and ground velocity of the aircraft based on the first and second portions.
Abstract:
In one embodiment, a method of dynamic reference plane compensation, comprises impinging radiation from a first radiation source onto a surface of an object; generating an uncompensated measurement signal from radiation reflected from a first location on the surface and a second location; generating a compensation signal from radiation reflected from a third location and a fourth location on the surface; and generating a compensated measurement signal using the uncompensated measurement signal and the compensation signal.
Abstract:
A multifunction rangefinder capable of measuring distance, compass location and altitude. A distance measurement unit capable of long and short distance measurements transmits a light beam to a target, receives a reflected light from the target and outputs a distance measurement signal. A compass measurement unit measures terrestrial magnetism and outputs a compass measurement signal. An altitude measurement unit measures atmospheric pressure to generate an altitude measurement signal. A microprocessor calculates a distance between the target and the multifunction rangefinder, altitude and the compass location of the target according to the distance, altitude and compass measurement signals respectively.
Abstract:
Digitized stereo image pairs are analyzed by first aggregating the images to produce several levels of lower resolution images, bandpass filtering each of the images by applying a Laplacian filter to edge enhance the features, matching the features of low resolution images while generating a disparity image which contains elevation information, repeating the feature matching at successively higher resolutions and creating progressively improving disparity images, and extracting the elevation data from the final disparity image. The feature matching procedure uses an estimate of feature disparity to help locate a feature in one image which corresponds to a feature in another image and is applied iteratively at each level of resolution. Dilation of disparity data from matched points to neighboring unmatched areas produces a comprehensive disparity image which aids in more efficient feature location on the next pass.