Abstract:
In the conventional plating process, plating solutions are newly prepared and the plating solutions used previously are dumped as industrial wastes, which is accompanied by environmental loads, effluent costs, costs for purchasing new solutions, and the like, and the present invention can recycle a foemer plating solution to prepare a new plating solution, for example, in the following order: a process for preparing a SnnullBi alloy plating solution (S1); a process for an active carbon treatment to remove the completing agent (S2); a process for removing Bi (S3); a process for a sedimenting treatment (S4); and a process for analyzing and correcting Sn plating solution. The recycling of plating solutions eliminates their effluent treatment and reduces environmental loads, effluent costs, and costs for purchasing new solutions. In the administration of the plating solution compositions, the conventional data can be utilized to facilitate the administrating operation.
Abstract:
A method to determine and monitor concentrations of inert metal plating components in metal plating baths. An inert indictor is included in the bath composition and the concentration of the inert indictor is monitored during plating. The change in the concentration of the inert indicator is used to determine the change in the concentration of inert bath components.
Abstract:
A method and apparatus for removing degraded organics from an electroplating solution by passing at least a portion of electroplating solution through a filter. The apparatus generally includes a deposition cell including a fluid inlet, a fluid reservoir, and at least one filter disposed between the reservoir and the fluid inlet. The apparatus may further include a control valve disposed between the fluid reservoir and the fluid inlet for passing at least a portion of an electroplating solution to a recovery stream including the at least one filter. Embodiments of the invention further include a method generally including the steps of providing a substrate having a seed layer disposed on a surface thereof, disposing the substrate in an electroplating solution, flowing a portion of the electroplating solution through a filter in an amount sufficient to remove an amount of organic additives from the electroplating solution equal to a calculated rate of organic additive degradation, and flowing the electroplating solution to the substrate.
Abstract:
A method of reducing etching of a seed layer by a plating solution. Prior to introducing the semiconductor wafer with the seed layer into the plating solution, the etching power of the plating solution is diminished.
Abstract:
To provide a plating method, which enables wide industrial use of the redox system electroless plating method having excellent characteristics, and a plating bath precursor which is preferable for the plating method. The plating method comprises a process oxidizing first metal ions of a redox system of a plating bath from a lower oxidation state to a high oxidation state, and second metal ions of said redox system are reduced and deposited onto the surface of an object to be plated, wherein a process is provided in which by supplying the electrical current to the plating bath, the first metal ions are reduced from said lower oxidation state to thereby activate the plating bath. The plating bath precursor is formed stabilizing the plating bath so that reduction and deposition of the second metal ions substantially do not occur in order to improve its storing performance.
Abstract:
The present invention relates to a plating method and a plating apparatus which can attain embedding of copper into fine interconnection patterns with the use of a plating liquid having high throwing power and leveling properties, and which can make the film thickness of the plated film substantially equal between the interconnection region and the non-interconnection region, thereby facilitating a later CMP processing. A plating method comprising filling a plating liquid containing metal ions and an additive into a plating space formed between a substrate and an anode disposed closely to the substrate so as to face the substrate, and changing the concentration of the additive in the plating liquid filled into the plating space during a plating process.
Abstract:
A substrate is plated with a metal film of uniform thickness only in a limited area thereof which is to be plated. A substrate plating apparatus has a substrate holder for holding a substrate and a plating cell for plating a portion of a surface, to be plated, of the substrate held by the substrate holder. The plating cell has an anode disposed so as to cover the portion of the surface, to be plated, of the substrate held by the substrate holder, a cathode for supplying a current to the surface, to be plated, of the substrate in such a state that the cathode is brought into contact with the substrate, a plating liquid supplying device for supplying a plating liquid between the anode and the surface, to be plated, of the substrate, and a power source for applying a voltage between the anode and the cathode.
Abstract:
Embodiments of the invention provide a method and formulations for preventing foam formation inside a plating apparatus prior to or during plating a material on a substrate. In one embodiment, a method for preventing foam formation inside a plating apparatus designed for plating a material on a substrate includes providing an electrolyte solution containing at least one antifoaming agent, at least one metal ion source, and a supporting electrolyte. The method further includes placing the substrate onto a substrate holder of the plating apparatus, immersing the substrate in the electrolyte solution, and depositing the material onto the substrate.
Abstract:
Embodiments of the invention generally provide an apparatus and method for replenishing organic molecules in an electroplating bath. The replenishment process of the present invention may occur on a real-time basis, and therefore, the concentration of organics minimally varies from desired concentration levels. The replenishment method generally includes conducting pre-processing depletion measurements in order to determine organic depletion rates per current density applied in the electroplating system. Once the organic depletion rates per current density are determined, these depletion rates may be applied to an electroplating processing recipe to calculate the volume of organic depletion per recipe step. The calculated volume of organic depletion per recipe step may then be used to determine the volume of organic molecule replenishment per unit of time that is required per recipe step in order to maintain a desired concentration of organics in the plating solution. The calculated replenishment volume may then be added to the processing recipe so that the replenishment process may occur at real-time during processing periods. The apparatus generally includes a selectively actuated valve in communicaiton with a fluid delivery line, wherein the valve is configured to fluidly isolate a plating cell during a non-processing time period. The valve may be controlled by a system controller, and thus, the fluid level in the cell may be controlled during a non-processing time period.
Abstract:
In combination, a fluid dispenser and an electrochemical cell to produce electric energy by chemical conversion of the fluid to be dispensed. The electrical energy produced is preferably used to operate a device associated with the dispensing of the fluid as, for example, in operation of an electric pump-to-pump fluid from the reservoir. The fluid preferably is dispensed for use after dispensing in some other purpose than as a source for electrochemical energy to dispense fluid from the reservoir. For example, preferred fluid containing alcohol compounds are for use in cleaning and disinfecting.