摘要:
Medical devices that include oxidizable portions can be plated after a two step activation process that includes successive applications of two aqueous solutions of ammonium bifluoride. Once plated, such materials can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical devices that are more visible to fluoroscopy.
摘要:
According to one embodiment of the present invention, a method for electroplating electronic devices is disclosed which includes placing the outer surface of a substrate in contact with a solution comprising a conductive material. An electrical current is passed through the solution and the substrate so as to cause the conductive material to deposit on the substrate under the electromotive force caused by the electrical current. The level of the electrical current is varied from a first current level to a second current level to provide for differing rates of deposition of the conductive material on the substrate. The second current level provides a relaxation period to allow the conductive material deposited on the substrate to come to equilibrium.
摘要:
In the production of printed circuit boards it is required that organic protective coatings adhere tightly on the copper surfaces. Accordingly, matt layers of copper are to be preferred over lustrous coatings. The bath in accordance with the invention serves to deposit matt layers of copper and has the additional advantageous property that the layers may also be deposited with sufficient coating thickness in very narrow bore holes at average cathode current density. For this purpose the bath contains at least one polyglycerin compound selected from the group comprising poly(1,2,3-propantriol), poly(2,3-epoxy-1-propanol) and derivatives thereof.
摘要:
A method of immersing a substrate into electrolyte solution for electroplating, the method comprising connecting an electric source between an anode immersed in the electrolyte solution and a seed layer formed on the substrate. A first voltage level of the seed layer is biased to be equal to, or more positive than, a second voltage level of the anode. The substrate is then immersed into the electrolyte solution.
摘要:
A continuous layer of a metal is electrodeposited onto a substrate having both hydrodynamically inaccessible recesses and hydrodynamically accessible recesses on its surface by a two-step process in which the hydrodynamically inaccessible recesses are plated using a pulsed reversing current with cathodic pulses having a duty cycle of less than about 50% and anodic pulses having a duty cycle of greater than about 50% and the hydrodynamically accessible recesses are then plated using a pulsed reversing current with cathodic pulses having a duty cycle of greater than about 50% and anodic pulses having a duty cycle of less than about 50%.
摘要:
A method for galvanically depositing nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath includes using electrolytes containing nickel compounds or cobalt compounds. At least one anode and at least one cathode of the bath are subject to periodic current pulses. The IA/IC ratio of the anode current density IA to the cathode current density IC is selected to be greater than 1 and smaller than 1.5. The charge ratio QA/QCnullTAIA/TCIC of the charge QA, transported during an anode pulse of duration TA, to the charge QC transported during a cathode pulse of duration TC , is between 30 and 45. A bath for carrying out the method may have contoured anodes, current restrictors, a cleaning device for the electrolyte, and a circulating device with recycling of the electrolyte through nozzles.
摘要:
To provide a method of metal plating to give a metal plating coating with excellent luster and high corrosion resistance and wear resistance. This metal plating method includes pulse plating by pulsed electrolysis by periodically applying electric current. The pulsed electrolysis is carried out in condition that the pulse frequency and the current density are controlled so that the ratio of the quantity of deposited lattice per pulse to the height of the lattice is 0.28 or lower, that the duty ratio of the pulse frequency is controlled to be 0.5 or lower, and that the duration of complete pause caused by distortion of pulse waveform is controlled to be one half or longer of the duration of current interruption. The foregoing plating is carried out while fluidizing plating solution to be brought into contact with the object body 5 at a flow rate of 0.04 (m/s) or higher and making the solution evenly flow along the face to be plated.
摘要:
A method and apparatus for electrochemically depositing a metal into a high aspect ratio structure on a substrate are provided. In one aspect, a method is provided for processing a substrate including positioning a substrate having a first conductive material disposed thereon in a processing chamber containing an electrochemical bath, depositing a second conductive material on the first conductive material as the conductive material is contacted with the electrochemical bath by applying a plating bias to the substrate while immersing the substrate into the electrochemical bath, and depositing a third conductive material in situ on the second conductive material by an electrochemical deposition technique to fill the feature. The bias may include a charge density between about 20 mA*sec/cm2 and about 160 mA*sec/cm2. The electrochemical deposition technique may include a pulse modulation technique.
摘要翻译:提供了一种在基板上将金属电化学沉积成高纵横比结构的方法和装置。 在一个方面,提供了一种用于处理衬底的方法,包括在包含电化学浴的处理室中定位其上具有第一导电材料的衬底,当第一导电材料与第一导电材料接触时,将第二导电材料沉积在第一导电材料上 通过在将基板浸入电化学浴中的同时将衬底施加电镀偏压并通过电化学沉积技术在第二导电材料上原位沉积第三导电材料来填充该特征,从而进行电化学浴。 该偏压可以包括约20mA * sec / cm 2和约160mA * sec / cm 2之间的电荷密度。 电化学沉积技术可以包括脉冲调制技术。
摘要:
In an electroplating method, a plating target article (X) disposed so as to be in contact with plating bath (14) is set as a cathode while a metal member disposed so as to be in contact with the plating bath (14) is set as an anode, and a voltage is applied between the cathode and the anode while vibrational flow is induced by vibrating vibrational vanes (16f) which are fixed in multi-stage style to a vibrating rod (16e) vibrating in the plating bath (14) interlockingly with vibration generating means (16d). Plating current flowing from the anode through the plating bath (14) to the cathode is pulsed and alternately set to one of a first state where the plating current keeps a first value I1 for a first time T1 and a second state where the plating current keeps a second value I2 having the same polarity as the first value I1 for a second time T2, the first value I1 being five or more times larger than the second value I2, and the first time T1 being three or more times longer than the second time T2.
摘要:
A method of electroplating metal onto a low conductivity layer combines a potential or current reversal waveform with variation in the amplitude and duration of the applied potential or current pulse. The method includes, over time, varying the duration of the pulse and continuously decreasing the amplitude of both the cathodic and anodic portions of the waveform across the surface of the low conductivity layer as the deposition zone moves from the center of the surface of the low conductivity layer to the outside edge. By virtue of the ability to vary the amplitude and duration of the pulse, the method facilitates the filling of structures in the center of the low conductivity layer without overdepositing on the outside edge, thus ensuring a controlled deposition of material across the surface of the low conductivity layer.