Abstract:
The present invention relates to the purification of large scale quantities of active (infectious) adenovirus and AAV, especially for use in therapeutic applications. In particular, the invention provides improved methods for contacting such viruses with suitable chromatographic materials in a fashion such that any damage to the virus, particularly to surface components thereof, resulting from contact with such chromatographic materials is minimized or eliminated. The result is the ability to rapidly and efficiently purify commercial level quantities of active (infectious) virus suitable for use in therapeutic applications, e.g. gene transfer/therapy procedures.
Abstract:
This invention relates to viral particles which are released by mammal cells after the infection with human cytomegalovirus (HCMV). The invention also relates to particles whose antigenicity has been optimized by changing the HCMV using genetic engineering. The invention further relates to the use of such particles as a vaccine and a method for multiplying the HCMV in mammal cells.
Abstract:
The present invention provides methods of purifying adeno-associated virus (AAV) particles. These AAV particles include AAV2, AAV4 and AAV5 particles. The present invention also provides AAV particles purified by the methods of the present invention.
Abstract:
Fermentation media, employed for its ability to grow recombinant mammalian cells to high densities and abet their expression of recombinant protein drug products at high titers, are rendered free of active viruses by treatment with low levels of light, levels at which the essential media properties are retained.
Abstract:
Methods for removing empty capsids from stocks of AAV virions comprising mixtures of empty and packaged capsids are described. The methods entail heating and adjusting the pH value of the stock, optionally in the presence of one or more chemical destabilizing agents.
Abstract:
A method of concentrating and recovering an enzyme activity from enveloped viruses present in a biological sample, is described. The method comprises contacting the biological sample in a first buffer solution with a virus-binding matrix, such as an anion exchanger matrix, to attach virus particles present in the sample to the matrix, washing the matrix carrying the virus particles with a second buffer solution to remove components interfering with viral enzyme activity, lysing the immobilized virus particles in a third buffer solution and recovering the concentrated viral enzyme activity from the third buffer solution. Additionally, a commercial package containing written and/or data carrier instructions for performing laboratory steps for concentration and recovery of an enzyme activity from enveloped viruses present in a biological sample and at least one component necessary for the assay, is disclosed.
Abstract:
A method of producing viral antigens in vitro by infecting animal organ tissue rich in mitochondria with a virus, including human hepatitis B virus (HBV), and culturing the infected tissue in vitro is disclosed. A method of producing proteins in vitro by transfecting mitochondria-rich animal tissue with a recombinant HBV-based vector and culturing the transfected tissue in a dynamic tissue culture system is disclosed.
Abstract:
The present invention is directed to a cell line capable of supporting replication of a growth-defective Herpes Simplex Virus strain; specifically a replication-defective HSV-2 double mutant. Particularly disclosed is a cell line that expresses the ICP8 protein and the UL5 protein of Herpes Simplex Virus. This cell line is useful to propagate a replication-defective HSV-2 vaccine strain that contains mutations and/or deletions in the ICP8 and UL5 genes.
Abstract:
The invention provides a cell and a method of using the cell for the propagation of a replication-deficient adenoviral vector, wherein the cellular genome comprises a nucleic acid sequence whose expression produces a gene product that complements a replication-deficient adenoviral vector. The nucleic acid sequence is operatively linked to a chimeric expression control sequence comprising at least a functional portion of a CMV immediate early promoter/enhancer region and/or at least a functional portion of an adenoviral promoter, wherein the chimeric expression control sequence is upregulated by one or more viral proteins not produced by the nucleic acid sequence.