Abstract:
Described herein are systems and methods of fouling mitigation in a hydrocarbon fractionation column. The methods correlate operating parameters of the fractionation column, specifically flow rate and temperature, with fouling. The methods can include measuring a temperature and a flow rate at a bottom stream of the hydrocarbon fractionation column; providing the measured temperature and flow rate to a processing device; determining, by the processing device, based on the measured temperature and flow rate of the bottom stream, an antifoulant treatment protocol for the hydrocarbon fractionation column; and treating the hydrocarbon fractionation column by controlling, by the processing device, a feed control unit in accordance with the determined antifoulant treatment protocol.
Abstract:
Processes and systems that control operation of a commercial refinery distillation column and/or splitter operable to separate hydrocarbons. An automated process controller (APC) receives signal from at least one analyzer that provides information about the concentration of at least a first chemical in a first fraction and a second chemical in a second fraction obtained from the distillation column. The APC comprises programming in the form of an algorithm that calculates real-time monetary values for the first chemical and the second chemical and alters the operation of the distillation column to change either the percentage of the first chemical in the second fraction or the percentage of the second chemical in the first fraction, thereby maximizing overall operational profit for the distillation column.
Abstract:
A system of interlocks for controlling flow of low temperature process streams in a manufacturing process through a cold box to equipment or piping not specified for such temperatures by opening and closing valves and starting and stopping pumps. At least one interlock affects streams heated in the cold box. At least one interlock affects the streams cooled in the cold box. The interlocks are activated by temperatures of process lines to prevent exposure of equipment and piping to low temperatures while preventing the shutdown of the cold box. An override controller including a predictive failure capability is also provided.
Abstract:
The process can include transferring heat from a light product in a first heat exchange stage to produce a cooled product and a first medium pressure steam and separating a steam cracker quench oil therefrom. Heat can be transferred from the steam cracker quench oil in a second heat exchange stage to produce a first cooled quench oil and a second medium pressure steam. Heat can be transferred from at least a portion of the first cooled quench oil in a third heat exchange stage to produce a second cooled quench oil and low pressure steam. A total heat duty generated in the first heat exchange stage, the second heat exchange stage, and the third heat exchange stage can be equal to QT1 and a heat duty generated in the first heat exchange stage and the second heat exchange stage can be ≥0.5QT1 joules/sec.
Abstract:
An apparatus includes at least one processor configured to obtain inline measurements of one or more properties of crude oil, translate the measurements into a set of process and control parameters, and apply the process and control parameters to process equipment. The process and control parameters configure the process equipment to process the crude oil having the one or more properties. The one or more properties of the crude oil may include at least one of: density, specific gravity, viscosity, carbon residue, and sulfur content of the crude oil. The process and control parameters could be applied to one or more controllers associated with a blending unit in a refinery or to one or more controllers associated with a crude oil distillation column in the refinery.
Abstract:
Turbine fuel provided for large-scale land based turbines used by utilities for producing electricity and desalinated water, and for large mobile engines and turbines in marine and remote applications where only liquid fuels are available. Use results in less corrosion, ash formation and emissions (NOx, SOx, CO2 and noxious metals) than firing contaminated heavy crude, refinery residual oils or high sulfur fuel oils. Manufacture is by decontaminating crude oils, non-conventional crudes, and other highly contaminated feeds. Each fuel is produced as a single product of unit operations, not ex-plant blend of various refinery products, yet using an apparatus configuration less complex than conventional crude oil refining. These fuels can be fired by advanced high efficiency turbines of combined cycle power plants having hot flow paths and heat recovery steam generation systems susceptible to corrosion, which systems cannot otherwise risk contaminated heavy crudes or refinery residual oils feeds.
Abstract:
Methods and systems for predicting crude oil blend compatibility and optimizing blends for increasing heavy crude oil processing are described. The method includes receiving ratios of physical parameters of crude oils for optimization of crude oil blend. The physical parameter ratios are based on Kinematic Viscosity (V), Sulphur (S), Carbon Residue (C), and American Petroleum Institute (API) gravity. The crude oil blend compatibility (K model) is determined and generated using the physical parameter ratios. The K model is developed by coefficients obtained by regression analysis between the ratios of physical parameters of known crude oils and composite compatibility measure determined from multiple compatibility test results of the known crude oils. The predicted crude oil blend compatibility can be used for optimizing heavy crude oil processing.
Abstract:
Systems and methods for refining conventional crude and heavy, corrosive, contaminant-laden carbonaceous crude (Opportunity Crude) in partially or totally separated streams or trains.
Abstract:
A process for separating naphtha feed stream and recovering heat from at least one stream from a column by heating other columns. Preferably, both an overhead stream and a bottom stream from a first column heat a second column and a third column. The pressure of the overhead stream is increased, resulting in an increased temperature of the overhead and bottoms streams. The overhead stream can be split into portions to heat other columns.
Abstract:
Disclosed herein is a method of estimating a property of a hydrocarbon comprising the steps of: preparing a liquid sample of a hydrocarbon, the hydrocarbon having asphaltene fractions therein; precipitating at least some of the asphaltenes of a hydrocarbon from the liquid sample with one or more precipitants in a chromatographic column; dissolving at least two of the different asphaltene fractions from the precipitated asphaltenes during a successive dissolution protocol; eluting the at least two different dissolved asphaltene fractions from the chromatographic column; monitoring the amount of the fractions eluted from the chromatographic column; using detected signals to calculate a percentage of a peak area for a first of the asphaltene fractions and a peak area for a second of the asphaltene fractions relative to the total peak areas, to determine a parameter that relates to the property of the hydrocarbon; and estimating the property of the hydrocarbon.