Integrated hydrotreating and deep hydrogenation of heavy oils including demetallized oil as feed for olefin production

    公开(公告)号:US11072751B1

    公开(公告)日:2021-07-27

    申请号:US16851536

    申请日:2020-04-17

    Abstract: An integrated process is provided herein having a first reaction zone to lower sulfur and nitrogen content of the initial feedstock to a target level to facilitate processing in a second reaction zone for deep hydrogenation. With the very low heteroatom content, noble metal catalyst materials used in the second reaction zone are protected and maximum saturation of aromatics is achieved. The processes and systems herein are suitable for converting certain heavy fractions, typically considered “low value” feedstocks, into higher value products including gasoline and diesel, and a hydrogen-rich, aromatic-lean heavy fraction suitable as feed for olefin production processes, or as a lubricant base oil.

    Process for producing benzene from C5-C12 hydrocarbon mixture

    公开(公告)号:US10793491B2

    公开(公告)日:2020-10-06

    申请号:US15318154

    申请日:2015-06-01

    Abstract: A process for producing benzene comprising the steps of:(a) separating a source feedstream comprising C5-C12 hydrocarbons including benzene and alkylbenzenes into a first feedstream comprising a higher proportion of benzene than the source feedstream and a second feedstream comprising a lower proportion of benzene than the source feedstream and subsequently, (b) contacting the first feedstream in the presence of hydrogen with a first hydrocracking catalyst, and (c) contacting the second feedstream with hydrogen under second process conditions to produce a second product stream comprising benzene, wherein i) the second process conditions are suitable for hydrocracking and step (c) involves contacting the second feedstream in the presence of hydrogen with a second hydrocracking catalyst, ii) the second process conditions are suitable for toluene disproportionation and involve contacting the second feedstream with a toluene disproportionation catalyst or iii) the second process conditions are suitable for hydrodealkylation.

    Method for producing hydrocarbon liquid fuel

    公开(公告)号:US10533140B2

    公开(公告)日:2020-01-14

    申请号:US16306441

    申请日:2017-01-31

    Abstract: A method for producing a hydrocarbon liquid fuel including hydrocracking a raw material oil in the presence of a hydrocracking catalyst, at a supplying pressure of hydrogen of from 0.1 to 1.0 MPa, a liquid space velocity of liquid volume of the raw material oil of from 0.05 to 10.0 hr−1, and a flow rate of the hydrogen from 50 to 3,000 NL per 1 L of the raw material oil, wherein the hydrocracking catalyst is produced by a method including stirring a sulfur compound and a cracking catalyst in an aqueous medium to allow liquid-solid separation (step 1); stirring a solid product obtained in the step 1 and a metal component in an aqueous medium to allow liquid-solid separation (step 2); baking a solid product obtained in the step 2 (step 3); and reducing a solid product obtained in the step 3, or reducing a solid product obtained in the step 3, and then subjecting a reduced product to sulfurization treatment (step 4). According to the present invention, the hydrocracking of a raw material oil such as fats and oils and biomass retort oils, or a hydrocarbon or the like in petroleum oils, in a given composition can be accomplished by supplying a low-pressure hydrogen of a normal pressure or so.

    LUBRICANT BASESTOCK PRODUCTION WITH ENHANCED AROMATIC SATURATION

    公开(公告)号:US20200010772A1

    公开(公告)日:2020-01-09

    申请号:US16572946

    申请日:2019-09-17

    Abstract: Systems and methods are provided for producing lubricant basestocks having a reduced or minimized aromatics content. A first processing stage can perform an initial amount of hydrotreating and/or hydrocracking. A first separation stage can then be used to remove fuels boiling range (and lower boiling range) compounds. The remaining lubricant boiling range fraction can then be exposed under hydrocracking conditions to a USY catalyst including a supported noble metal, such as Pt and/or Pd. The USY catalyst can have a desirable combination of catalyst properties, such as a unit cell size of 24.30 or less (or 24.24 or less), a silica to alumina ratio of at least 50 (or at least 80), and an alpha value of 20 or less (or 10 or less). In some aspects, the effluent from the second (hydrocracking) stage can be dewaxed without further separation. In such aspects, a portion of the dewaxed effluent can be used as a recycle quench stream to cool the hydrocracking effluent prior to entering the dewaxing reactor.

Patent Agency Ranking