Forming asphalt fractions from three-product deasphalting

    公开(公告)号:US10655077B2

    公开(公告)日:2020-05-19

    申请号:US16031288

    申请日:2018-07-10

    Abstract: Systems and methods are provided for using a three-product deasphalter to produce advantageous combinations of deasphalted oil, resin, and rock. The desaphalted oil, resin, and rock can then be further combined, optionally with other vacuum gas oil fractions produced during the distillation that generated the feed to the three-product deasphalter, to produce a product slate of improved quality while also maintaining the quality of the resulting asphalt product and reducing or minimizing the amount of lower value products generated. The additional “resin” product from the three product deasphalter can be generated by sequential deasphalting, by using a resin settler to separate resin from the deasphalted oil, or by any other convenient method.

    Monitoring of hydroprocessed fluids by optical spectroscopy

    公开(公告)号:US11198825B2

    公开(公告)日:2021-12-14

    申请号:US17063065

    申请日:2020-10-05

    Abstract: Systems and methods are provided to allow for characterization of feeds, intermediate effluents, and/or products during lubricant base stock production. More generally, the systems and methods can allow for characterization of aromatics in various types of hydroprocessed intermediate effluents and/or products. In some aspects, the characterization can include measuring a fluorescence excitation-emission matrix spectrum for a sample, and then generating a representation of the spectrum by fitting the measured spectrum to a linear combination of spectra corresponding to compounds or compound classes. As the hydroprocessing process continues, additional measured spectra and comparing the fit quality of the representation to the subsequently measured spectra. When the fit quality falls below a threshold value, the loss in fit quality indicates a change in the number and/or distribution of aromatics in the sample. In other aspects, fluorescence excitation-emission spectroscopy can be used to characterize the amount of aromatics within a sample that correspond to one or more fluorescence compound classes. Based on this characterization, adjustments can be made to a process to reduce undesirable levels of aromatics, such as undesirable levels of polynuclear aromatics.

Patent Agency Ranking