Abstract:
A polymer compound for a conductive polymer including one or more repeating units “a” shown by the following general formula (1), and having a weight-average molecular weight in the range of 1,000 to 500,000, wherein R1 represents a hydrogen atom or a methyl group; R2 represents any of a single bond, an ester group, and a linear, branched, or cyclic hydrocarbon group having 1 to 12 carbon atoms and optionally containing either or both of an ether group and an ester group; R3 represents a linear or branched alkyl group having 1 to 4 carbon atoms with one or more hydrogen atoms in R3 being substituted by a fluorine atom(s); “Z” represents any of a single bond, a phenylene group, a naphthylene group, an ether group, and an ester group; and “a” is a number satisfying 0
Abstract:
This invention relates to latent thiol monomers and their use in the synthesis of polymers. In addition, this invention relates to novel polymers and graft copolymers formed with these latent thiol monomers.
Abstract:
Provided are a cathode hybrid electrolyte for a solid secondary battery, a cathode including the cathode hybrid electrolyte, a method of preparing the cathode, and a solid secondary battery including the cathode hybrid electrolyte, wherein the cathode hybrid electrolyte includes an ion conductor represented by Formula 1, and an ionic liquid, where at least a portion of the anions of the ionic liquid comprise the same anionic moiety —Y− of the ion conductor, where, in Formula 1, X, R1 to R3, Y−, and n are the same as defined in the detailed description.
Abstract:
A polymer compound for a conductive polymer including one or more repeating units “a” shown by the following general formula (1), and having a weight-average molecular weight in the range of 1,000 to 500,000, wherein R1 represents a hydrogen atom or a methyl group; R2 represents any of a single bond, an ester group, and a linear, branched, or cyclic hydrocarbon group having 1 to 12 carbon atoms and optionally containing either or both of an ether group and an ester group; R3 represents a linear or branched alkyl group having 1 to 4 carbon atoms with one or more hydrogen atoms in R3 being substituted by a fluorine atom(s); “Z” represents any of a single bond, a phenylene group, a naphthylene group, an ether group, and an ester group; and “a” is a number satisfying 0
Abstract:
Superior dental fillings, tooth replacement parts, bridges and repair parts, which exhibit high abrasion resistance, stability to moisture and which do not undergo volume changes, are obtained by polymerization of a compound of formula
IN WHICH R is H or -CH3, X is an alkylidene or the -SO2- group, Y is an oxyalkylene group having between 2 and 5 carbon atoms, or an alkylidene group having between 1 and 5 carbon atoms. In some instances, the polymerization is carried out in the presence of a filler.
Abstract:
A curable composition that gives a cured product exhibiting a high refractive index and a surface without defects such as roughness or cracks, a cured product of the composition, and a compound that may be blended to the composition. A triazine compound is used as a curable component in a curable composition, the triazine compound having an optionally substituted quinolinyl group, an optionally substituted isoquinolinyl group, or an optionally substituted 2-substituted benzothiazolyl group and an aromatic-ring-containing group having a radically polymerizable group-containing group or an aromatic-ring-containing group having a cationically polymerizable group-containing group, each group bonded to the triazine ring via an amino group.
Abstract:
Provided are a cathode hybrid electrolyte for a solid secondary battery, a cathode including the cathode hybrid electrolyte, a method of preparing the cathode, and a solid secondary battery including the cathode hybrid electrolyte, wherein the cathode hybrid electrolyte includes an ion conductor represented by Formula 1, and an ionic liquid, where at least a portion of the anions of the ionic liquid comprise the same anionic moiety —Y− of the ion conductor,
where, in Formula 1, X, R1 to R3, Y−, and n are the same as defined in the detailed description.
Abstract:
Provided herein are methods of using aryl thiols as photoinitiators. The thiol compounds are useful as oxygen insen-sitive photoinitiators for applications such as bulk polymerizations and for specialty polymer synthesis by preparing aromatic thiol functionalized macroinitiators.
Abstract:
An electrochromic compound represented by the following formula (1) is provided: where each of R1 to R9 and Ar1 to Ar6 independently represents one of a hydrogen atom, a halogen atom, a monovalent organic group, a group in which two or more aryl and/or heteroaryl groups are bound to each other via a covalent bond, a group in which two or more aryl and/or heteroaryl groups are condensed with each other to form a ring, and a polymerizable functional group; and at least one of Ar1 to Ar6 represents an aryl group, a heteroaryl group, a group in which two or more aryl and/or heteroaryl groups are bound to each other via a covalent bond, or a group in which at least two aryl or heteroaryl groups are condensed with each other to form a ring.
Abstract:
Methods of producing microporous zwitterionic cryogels are described, wherein the cryogels are useful for sustaining release of therapeutic agents. The disclosed cryogels overcome several limitations associated with existing compositions, for example the disclosed cryogels have high loading efficiencies and a sustained release profile with minimal burst of up to 4 months or more. The characteristics of the disclosed cryogels can be varied by altering monomer (e.g. zwitterion) and crosslinker selection. The amount of monomer contained in the hydrogel may also be varied to aid in controlling the cryogel's chemistry.