Abstract:
Methods of producing microporous zwitterionic cryogels are described, wherein the cryogels are useful for sustaining release of therapeutic agents. The disclosed cryogels overcome several limitations associated with existing compositions, for example the disclosed cryogels have high loading efficiencies and a sustained release profile with minimal burst of up to 4 months or more. The characteristics of the disclosed cryogels can be varied by altering monomer (e.g. zwitterion) and crosslinker selection. The amount of monomer contained in the hydrogel may also be varied to aid in controlling the cryogel's chemistry.
Abstract:
The present invention provides radical crosslinked zwitterionic gels, methods of preparing the radical crosslinked zwitterionic gels, and methods of using the radical crosslinked zwitterionic gels for treating a wound.
Abstract:
Methods, processes, systems, and compositions for treating disease are disclosed. In some cases, the present disclosure provides for delivery of therapeutic agents, in an active form, to a localized area, over an extended period of time. In one embodiment, the disclosed composition may comprise a therapeutic agent and a biodegradable polymer and/or a biodegradable polymer microsphere.
Abstract:
The present invention relates to the unexpected discovery of compositions and methods for the treatment of growth plate defects. In certain embodiments, the methods prevent the growth of “bony bars” at the site of growth plate injury, thereby preventing growth arrest and/or deformity. In certain embodiments, the compositions comprise hydrogels comprising at least one biological factor capable of preventing bony bar formation.
Abstract:
The present invention relates to a method for in situ biomimetic mineralization of polymeric hydrogels, where the incorporated CaP phase can be selectively tuned in chemical composition and morphology to mimic bone and dental mineral. The present invention also relates to a method to coat a substrate with apatite material, the resulting product and the use of the product.
Abstract:
Methods of producing microporous zwitterionic cryogels are described, wherein the cryogels are useful for sustaining release of therapeutic agents. The disclosed cryogels overcome several limitations associated with existing compositions, for example the disclosed cryogels have high loading efficiencies and a sustained release profile with minimal burst of up to 4 months or more. The characteristics of the disclosed cryogels can be varied by altering monomer (e.g. zwitterion) and crosslinker selection. The amount of monomer contained in the hydrogel may also be varied to aid in controlling the cryogel's chemistry.
Abstract:
Methods of treating, reducing the risk of, preventing, or alleviating a symptom of inflammation or inflammatory disease, including wounds, diabetic ulcer, and inflammatory bowel disease, by administration of gel-based delivery particles, such as zwitterionic copolymer cryogels or chitosan microgels, containing cerium oxide nanoparticles.
Abstract:
Methods, processes, systems, and compositions for treating disease are disclosed. In some cases, the present disclosure provides for delivery of therapeutic agents, in an active form, to a localized area, over an extended period of time. In one embodiment, the disclosed composition may comprise a therapeutic agent and a biodegradable polymer and/or a biodegradable polymer microsphere.