Abstract:
A method for manufacturing an all-glass solar heat collecting tube without a tail pipe. The bottom of one end of an inner glass tube plated by a selective absorbing coating layer is rounded, the other end is connected to a first glass outer tube. The bottom of one end of a second glass outer tube is rounded and the other end is flared. The connected inner glass tube/first glass outer tube is inserted into the second glass outer tube. A gap is formed between the first glass outer tube and the second glass outer tube to serve as an air exhausting channel. The first glass outer tube is inserted into the flared opening of the second glass outer tube. The contact point between the first glass outer tube and the second glass outer tube is heated to frit seal and butt joint.
Abstract:
A glass tube (1) that is used in such a manner that an end face thereof is hermetically and firmly bonded to a surface of a panel (11) of a flat display tube so as to cover a ventilation hole (12) which is formed in the panel (11), the glass tube (1) including a flange portion (4) formed by heating work of the glass tube (1) and provided on an outer periphery near the end face on a side firmly bonded to the surface of the panel (11) of the flat display tube. When the flange portion (4) is formed, a tube end portion (2) protruding ahead of the flange portion (4) is left, so that a flange portion (4) face on a side facing the surface of the panel (11) of the flat display tube allows a frit glass (6) to be placed thereon, the frit glass (6) having a height equal to an interval (an outer peripheral face of the tube end portion) between the end face of the glass tube and the flange portion (4) face, which enables stable bonding of the glass tube (1) to the surface of the panel (11) of the flat display tube.
Abstract:
Improved bonding in a cathode ray tube (CRT) between its glass funnel and glass faceplate is achieved by applying a thin base layer of a priming agent to an aft portion of the faceplate adjacent to the periphery thereof as well as to the forward edge of the funnel prior to positioning of the CRT components in contact. An intermediate layer of sealing glass frit is then deposited upon either of the aforementioned layers of the priming agent and adheres to the two priming agent layers without forming a re-entrant geometry. By "priming" the two abutting glass surfaces over an area which extends beyond the area of high loading with the priming agent prior to joining these surfaces, bond integrity is ensured and high stress concentration in the seal is avoided. The sealing glass frit may be comprised of a conventional glass cement paste and is also used as the priming agent in a preferred embodiment. The improved bonding method may also be used to bond a shadow mask support structure to the faceplate's inner surface or other CRT components to each other. Improved CRT components and assemblies made by the disclosed method are also disclosed.
Abstract:
A method for sealing a mount including a wafer in a neck of a stationary cathode-ray tube comprises positioning a first tier of burner tips completely around the neck such that the burner tips are aimed nonradially along directions tangent to a first circle, the plane of the first circle being aligned along the wafer. The first tier of burner tips is split into at least first and second radial segments, each segment being connected to means for moving the segment toward and away from the neck. The first tier of burner tips, while remaining stationary, provide a vortical pattern of flames around the neck. The radial segments are then removed from around the stationary neck sufficiently to allow the tube to proceed along a conveyor line.
Abstract:
A method for manufacturing an all-glass solar heat collecting tube without a tail pipe. The bottom of one end of an inner glass tube plated by a selective absorbing coating layer is rounded, the other end is connected to a first glass outer tube. The bottom of one end of a second glass outer tube is rounded and the other end is flared. The connected inner glass tube/first glass outer tube is inserted into the second glass outer tube. A gap is formed between the first glass outer tube and the second glass outer tube to serve as an air exhausting channel. The first glass outer tube is inserted into the flared opening of the second glass outer tube. The contact point between the first glass outer tube and the second glass outer tube is heated to frit seal and butt joint.
Abstract:
In various embodiments, a method for producing a fluid connection between hollow glass bodies is provided. The method may include molding a joining region on each of the glass bodies; at least partially opening the joining regions; mutually positioning the glass bodies in the region of the joining regions; and joining the glass bodies.