Abstract:
The disclosed technology includes a method for producing ultrafine alumina from salt slag waste generated in aluminum recycling useful in the manufacture of durable ceramic products; a system for recovering alumina from salt slag waste; a method and systems for recovering salts, aluminum and alumina from salt slag waste; and a method and systems of capturing ammonia in a process recovering salts, aluminum and alumina from salt slag waste. The methods and systems provided crush the dry particles of the salt slag waste, scrub the slag with water, and with steam and by means of a vented alumina press, dewater the scrubbed slag particles. In some methods and systems of the disclosed technology, the particles of the pressed alumina cake are further reduced. In some methods and systems, the salt in the salt effluent is crystalized. In some methods and systems of the disclosed technology, the ammonia is contained and captured.
Abstract:
The invention relates to a method of producing a binder comprising the steps of preparing (20) a residual material comprising amorphous alumina-rich and/or aluminium hydroxide-rich constituents, heating (30) the residual material to produce a fired material, the heating (30) of the residual material being at a temperature of >800° C.
Abstract:
The disclosed technology includes a method for producing ultrafine alumina from salt slag waste generated in aluminum recycling useful in the manufacture of durable ceramic products; a system for recovering alumina from salt slag waste; a method and systems for recovering salts, aluminum and alumina from salt slag waste; and a method and systems of capturing ammonia in a process recovering salts, aluminum and alumina from salt slag waste. The methods and systems provided crush the dry particles of the salt slag waste, scrub the slag with water, and with steam and by means of a vented alumina press, dewater the scrubbed slag particles. In some methods and systems of the disclosed technology, the particles of the pressed alumina cake are further reduced. In some methods and systems, the salt in the salt effluent is crystalized. In some methods and systems of the disclosed technology, the ammonia is contained and captured.
Abstract:
A bauxite processing method including: preliminarily grinding bauxites; mixing the bauxites as ground with magnetic field treated water into a pulp; exposing the pulp in a reaction chamber to a rotating magnetic field created by rotating ferromagnetic elements, carried out in a vortex layer generated by ferromagnetic elements rotating at a speed of at least 2800 rpm, to achieve a magnetoelastic effect and provide forces and energies which enable metal reduction; and separating a resulting metal oxide mixture.
Abstract:
A method for processing water treatment residuals, or other amorphous aluminium oxide or aluminium hydroxide rich waste residuals, for use in the manufacture of hydraulic binders, comprising heating the residuals to remove water and oxidise organic material contained therein, comprising controlling the temperature of the residuals during heating such that they are heated to a temperature no higher than 800° C., more preferably no higher than 650° C., to ensure that aluminium compounds in the WTR, in particular aluminium oxide and aluminium hydroxide, remain in an amorphous state. The method may comprise controlling the temperature of the water treatment residuals such that they are heated to a temperature between 350° C. and 650° C., more preferably between 400° C. and 500° C.
Abstract:
A method for recovery of aluminum hydroxide Al(OH)3 from an aluminum enriched water/wastewater treatment sludge is disclosed. The method includes the steps of: adding a hydrated lime slurry to the aluminum enriched water/wastewater treatment sludge to form an alkaline sludge; adding sodium carbonate Na2CO3 to the alkaline sludge to form a Na2CO3 treated sludge; forming a first supernatant from the Na2CO3 treated sludge of step b) containing NaAl(OH)4; introducing CO2 to the first supernatant to form a precipitate of Al(OH)3 and a second supernatant containing NaHCO3; and recycling at least a portion of the NaHCO3 from the second supernatant back to the alkaline sludge of step a).
Abstract:
The invention provides a method of inhibiting the accumulation of DSP scale in the liquor circuit of Bayer process equipment. The method includes adding one or more particular silane based small molecules to the liquor fluid circuit. These scale inhibitors reduce DSP scale formation and thereby increase fluid throughput, increase the amount of time Bayer process equipment can be operational and reduce the need for expensive and dangerous acid washes of Bayer process equipment. As a result, the invention provides a significant reduction in the total cost of operating a Bayer process.
Abstract:
A process to recover molybdenum contained in spent petrochemical catalysts has been invented. The proposed process permits the recovery of molybdenum in the form of an alloy, which can also contain other elements, such as nickel, cobalt, tungsten, iron and others. The process starts with a calcining operation for removal of hydrocarbons initially present in the spent catalysts, as well as to oxidize molybdenum and eventual other metal elements, such as nickel, cobalt, tungsten, iron; the calcined material is then fed into a plasma reactor, where molybdenum is recovered in an alloy formed with the other possible elements; the metal alloy can be readily commercialized. Besides recovering molybdenum, the plasma process also generates inert ceramic byproducts, containing alumina, silica and fluxing agents, such as lime. The process is clean and can be used for continuous operation, treating several types of materials, particularly spent catalysts, containing molybdenum or similar elements.
Abstract:
A process and apparatus for purifying water-insoluble particles is disclosed. The process comprises the steps of continuously recirculating a fluid aqueous suspension of the water-insoluble particles between a filtration system and a suspension reservoir; continuously conducting ultrafiltration of the recirculating suspension at the filtration system to separate an aqueous permeate containing the water-soluble impurities from the recirculating fluid aqueous suspension; continuously discharging the permeate generated by ultrafiltration; adding water to the recirculating fluid aqueous suspension undergoing ultrafiltration at approximately the same volumetric rate per hour as permeate is being discharged; monitoring the purity of the recirculating fluid aqueous suspension; and recovering the purified fluid aqueous suspension after the recirculating fluid aqueous suspension has reached a predetermined purity condition. An apparatus is also disclosed for carrying out the above process. Preferred water-insoluble particles may include lakes (particles with absorbed dye) and particles used to make lakes such as finely divided aluminum hydrate. Advantages of this invention include the ability to consistently produce high purity water-insoluble particles at low cost and with savings in manual labor. Purification according to this invention requires substantially less water than prior art methods, reducing purified water consumption and waste product disposal costs.
Abstract:
High surface purity heat transfer solids are formed, suitably by washing and treating particulate refractory inorganic solids, notably alumina, which contains as impurities up to about 0.5 wt. % silicon and/or up to about 500 wppm boron, with an acid, or dilute acid solution sufficient to reduce the concentration of silicon and boron in the outer peripheral surface layer of the particles, e.g., as measured inwardly toward the center of a particle to a depth of about 50 .ANG. using X-ray photoelectron spectroscopy, to no greater than about 5 atom percent silicon and boron, preferably about 2 atom percent silicon and boron, based on the total number of cations within said outer peripheral surface layer, thereby reducing the tendency of said particles to sinter and agglomerate in the conversion of said hydrocarbon to hydrogen and carbon monoxide in a fluidized bed synthesis gas operation vis-a-vis particles otherwise similar except that the particles are not treated with the acid. The tendency of the particles to sinter and agglomerate is further reduced by the additional removal of sodium, iron, calcium, and titanium impurities from the outer peripheral surface layer of the particles. Preferably the latter named impurities, or impurities other than silicon and boron, are reduced to a concentration below about 20 atom %, more preferably to a concentration below about 15 atom %, in the outer surface layer of the particles.