Abstract:
A tire pre-conditioning system includes a first mandrel, a second mandrel spaced apart from the first mandrel, and a controller in communication with the first mandrel and the second mandrel. The first mandrel is fixedly attached to a first shaft and including a first tapered sidewall. The second mandrel is fixedly attached to a second shaft and including a second tapered sidewall. The controller is operable to axially move the first mandrel and the second mandrel toward one another until the first and second tapered sidewalls are opposing respective beads of a tire, and supply pressurized fluid into an internal cavity of the tire to inflate the tire. The inflating causing the beads to move relative to mandrels while contacting the opposing respective tapered sidewalls to burnish the beads of the tire.
Abstract:
The invention relates to a cold expansion device (36) for work hardening a through bore (34) in a turbine engine part (32), comprising at least one chuck (38) supporting a burnisher (40) and a means (41) for pushing the chuck (38) in an axial direction, and is characterised in that it comprises at least: —a tubular guide (42) configured to guide the burnisher (40) to the bore (34), —a first magnetic attachment means (51) arranged at a free end (44) of the chuck (38), —the burnisher (40), comprising a work surface (46) and an end (48) comprising second magnetic attachment means (49) complementary to the first magnetic attachment means (51), and in that the axial pushing means (41) is configured to push the burnisher through the bore (34) until it emerges from stud bore.
Abstract:
A combination cutting and burnishing orbital drilling tool may include an elongate tool body including a cutting end and extending along a longitudinal axis. The tool body may include a burnishing portion spaced from the cutting end and configured to induce residual stress in a side wall of a hole without removing material. The tool body may further include a cutting portion interposed between the cutting end and the burnishing portion. The cutting portion may be configured to remove material from a workpiece, thereby creating the hole, during an orbital drilling process.
Abstract:
There is provided a method for processing a raceway groove configured to circumferentially form a to-be-processed side raceway groove on a surface to be processed of a workpiece, the to-be-processed side raceway groove is configured to be brought into rolling contact with a rolling element, and the surface to be processed is a cylindrical circumferential surface. The method for processing a raceway groove includes: arranging a processing rolling element rotatably between the to-be-processed side raceway groove and a tool side circumferential surface which is opposed to the surface to be processed and which is a cylindrical circumferential surface of a machining tool; rotating the machining tool relatively with respect to the workpiece; and performing a burnishing process on the to-be-processed side raceway groove.
Abstract:
A technique facilitates formation of a burnished region, e.g. a seal region, via plastic deformation of an internal surface. The technique utilizes a burnishing assembly which may comprise a stem sized for insertion into a tubular region. The stem may be combined with an actuator and a plurality of rolling elements mounted on the actuator. When the actuator is actuated to a radially outward position, the plurality of rolling elements may be moved into engagement with the internal surface until plastic deformation occurs. The stem may then the rotated to force the plurality of rolling elements along the internal surface so as to form a region of plastic deformation. The plastic deformation may be located to form a seal, for example, between adjacent components.
Abstract:
Disclosed is a rolling tool which serves for working—in particular rolling smooth—an inner lateral surface of a cylindrical clearance. For this purpose, the rolling tool has at least one rolling body, which is held in the rotatably drivable rolling tool, and can be taken along by said tool on a peripheral path along the inner lateral surface. The at least one rolling body is inserted into a radial clearance in the rolling tool and can be subjected to a pressurized fluid from the inside to the outside along the radial clearance. The fluid is an aerosol. The aerosol is a fluid mixed with gas and serves for hydrostatic bearing and lubrication.
Abstract:
A combined skiver and a smooth rolling tool with a skiver head and behind this a smooth rolling head, wherein between the skiver head and the rolling head an exclusive torque transmitting coupling is located which restricts the allowable axis shaft offset and/or the angular position of the axes of the rolling head and skiver head, to which the rolling head is connected, characterized in that the skiver head (2) is guided through a workpiece bore via a hydrostatic guideway.
Abstract:
A micro-roll forming device for providing a cylindrical blank metal article with a minute convexoconcave bearing surface, comprises a powered article holding structure that, when energized, rotates the cylindrical blank metal article about its axis; a forming tool that includes a form roller with a corrugated circular ridge; a tool holding structure that holds the forming tool in such a manner that the corrugated circular ridge of the form roller is directed toward and in contact with an outer surface of the cylindrical blank metal article rotatably held by the article holding structure; a biasing member that is incorporated with the tool holding structure to press the form roller against the outer surface of the cylindrical blank metal article with a given pressing force; and a powered moving structure that, when energized, moves at least one of the article holding structure and the tool holding structure in such a manner that the selected one moves in both a first direction perpendicular to an axis of the unselected one and a second direction parallel with the axis of the unselected one.
Abstract:
In a method of machining a surface of a bore of an aluminum cylinder block for internal combustion engines, the bore surface is machined to be formed with a number of recesses which are to be formed into oil reservoirs. The bore surface is then pressed uniformly to be plastically deformed so that each recess is narrow at its opening and broad in its inner part. The machining for formation of the recesses and the working for plastic deformation for narrowing the opening are combined together so that the bore surface is machined to have oil reservoir recesses each of which is narrow at its opening and broad at its inner part.
Abstract:
A sleeve bore machining apparatus has a plurality of reamers with different diameters, wherein a ball etc. is pressed in and passed through the sleeve bore after a machining with the reamer inserted in the sleeve, measures the push-in load involved in the pass-through operation to select a diameter of the reamer to be used for the next machining process in response to a magnitude of the measured load, or carries out a machining process while a reamer having an edged taper portion or taper stepped portions in a grinding portion is kept inserted in the bore of the sleeve, and controls an extent of insertion of the reamer for the next machining process in response to a magnitude of the measured load, so that the dimensional accuracy of the bore as well as the cylindricity can be successfully machined.