摘要:
There is disclosed a method and apparatus for finishing an internal channel of a component. The method comprises installing the component in a flow circuit which is configured to drive a fluid flow through the internal channel and controlling the fluid flow through the internal channel so that cavitation bubbles are continuously generated by a hydrodynamic effect to erode the internal channel by implosion of the cavitation bubbles. The fluid flow may comprise abrasive media which may abrade the internal channel.
摘要:
A polishing system and method for polishing a channel formed within a component is disclosed. The polishing system may include a tooling element operable to be positioned within a recess formed partially through a component. The tooling element may include an outer surface having a geometry corresponding to a geometry of the recess formed in the component. The tooling element forms a channel between the recess of the component and the tooling element when positioned in the recess. The system may also include a first member in fluid communication with a first opening of the channel, and a second member in fluid communication with a second opening of the channel. The second opening may be in fluid communication with the first opening via the channel. Additionally, the first and second member may be configured to continuously vary a pressure within the channel to move an abrasive slurry within the channel.
摘要:
A method for polishing radially expandable surgical stents is disclosed where fluid abrasive media M flows over surfaces of the stent 10 causing the surfaces of the stent 10 to be polished and streamlined. The stent 10 is temporarily provided with cylindrical support ends 20, which are not radially expandable to support the stent 10 during the polishing process. An interior polishing fixture 100 is provided which has cylindrical chambers 135 therein adapted to receive a stent 10 therein. Fluid abrasive media M then flows into bores 108 in the fixture 100 leading to the cylindrical chambers 135 and adjacent the inner diameter surfaces of the stent 10. Surfaces of the stent 10 forming the outer diameter are polished by placing the stent 10 within an exterior polishing fixture 200 which has a cylindrical recess 220 therein. The cylindrical recess 220 has a diameter greater than a diameter of outer surfaces of the stent 10 and includes a cylindrical shaft 270 passing axially through the cylindrical recess 220 upon which the stent 10 is located. Slanted bores 208 pass through walls of the exterior polishing fixture 200 and into the cylindrical recess 220, directing the abrasive media M adjacent exterior surfaces of the stent 10 and causing polishing of the exterior surfaces of the stent 10. The direction of abrasive media M flow can be reversed to make streamlining of segments of the stent 10 occur in a symmetrical fashion. After polishing of the stent 10 is completed, the cylindrical support ends 20 are removed and the stent 10 is ready for implantation and radial expansion within a body lumen L. When polished and streamlined, the radially expandable surgical stent 10 more effectively supports a body lumen L without excessive thrombus, restenosis and other medical complications.
摘要:
A system and method for radiusing and sizing microholes in diesel fuel injectors. A liquid abrasive slurry with rheological properties is used. As the slurry approaches and flows through the microhole it is at a first lower viscosity. Subsequently, the slurry is characterized by a higher viscosity which enables the use of a floor meter in the slurry flow path which directly and accurately monitors slurry flow rate and mass flow in real time. This allows for individual slurry processing of nozzles to their specified flow race in a continuous process.
摘要:
Methods and apparatus for deburring and rounding edges and polishing surfaces of radially expansible lumenal prostheses, such as stents and grafts, are provided. A stent (2) is mounted onto a polishing apparatus (58) and a flowable abrasive slurry is extruded through the apparatus in abrading contact with inner and outer surfaces (28, 29) and circumferential openings (30) in the stent. To polish the cut surfaces (32) and edges (34, 36) surrounding the openings, the abrasive slurry is introduced into an inner lumen (26) of the stent and extruded radially outward through the openings. The inner and outer wall surfaces 28, 29 are preferably pre-polished prior to cutting the slot pattern (i.e., openings 30) in the stent.
摘要:
A method of processing an orifice in a structure to attain a precise predetermined flow resistance through said orifice. Undersized orifices are machined by either electrochemical, chemical or electric discharge machining, while oversized orifices are electroplated, electroless plated or vapor deposition coated, such that the processing fluid, i.e. the electrolyte, corrosive fluid, dielectric or carrier gas as used in the machining, plating or coating process is passed through said orifice during said processing at a predetermined fixed pressure while measuring the dynamic flow resistance of said processing fluid through said orifice until said dynamic flow resistance is equal to that desired.
摘要:
A method for producing a smooth finish on the surfaces of a valve seat and a discharge port of a fuel injection valve having a main fuel injection valve body containing an electromagnetic coil, a fixed core, a movable core attracted magnetically towards the fixed core by the coil and a valve rod attached to the movable core and having a valve body for opening and closing a fuel discharge port in a valve seat-forming member attached to the valve body. The fuel discharge port is formed with a smooth surface finish by discharging a honing fluid against the surface. The honing fluid is also discharged against the surface of the valve seat to provide a smooth finish thereon and to provide a rounded corner at the juncture of the seat surface and the fluid discharge port.
摘要:
A method and apparatus for finishing a surface of a component. The method includes installing the component in an apparatus configured to deliver a flow of abrasives to the surface and to generate cavitation bubbles in a liquid contacting the surface using a cavitation generator that includes an ultrasonic generator configured to generate cavitation bubbles in the liquid contacting the surface by ultrasonic excitation in the liquid or a laser configured to generate cavitation bubbles in the liquid contacting the surface by laser excitation in the liquid; controlling the cavitation generator such that cavitation bubbles are generated to finish the surface by implosion of the cavitation bubbles; and controlling the flow of slurry to the surface so as to finish the surface by abrasion. An apparatus for finishing a surface of a component is also disclosed.
摘要:
A hollow spring includes a steel tube in which the average of surface roughness is smaller than 10 μm across the entire inner surface of the steel tube and/or compressive residual stress is given to the entire inner surface of the steel tube. The hollow spring may be manufactured by a step of polishing the inner surface of the steel tube by flowing a viscoelastic abrasive medium (200) within the tubular member (10), between a first opening (11) and a second opening (12) of the tubular member (10). The abrasive medium (200) may include a viscoelastic base material and a granular abrasive. The inner surface of the steel tube is polished evenly to reduce the surface roughness and/or is given compressive residual stress to increase the fatigue life of the hollow spring.
摘要:
Disclosed herein are systems and methods for polishing internal surfaces of apertures in semiconductor processing chamber components. A method includes providing a ceramic article having at least one aperture, the ceramic article being a component for a semiconductor processing chamber. The method further includes polishing the at least one aperture based on flowing an abrasive media through the at least one aperture of the ceramic article, the abrasive media including a polymer base and a plurality of abrasive particles.