Abstract:
A motorized chuck stage controlling method adapted to a wafer probing device is provided. The wafer probing device includes a control rod and a motorized chuck stage. The control rod can be moved between an upper limit position and a lower limit position, and the motorized chuck stage is moved along a Z-axis direction in response to a movement of the control rod. One purpose of the motorized chuck stage controlling method is to allow the operator to define the highest position to which the motorized chuck stage can be moved in response to the movement of the control rod, thereby preventing the probe and the wafer from colliding with each other.
Abstract:
A machine tool includes a motor configured to rotate a spindle, a tool magazine holding a plurality of tools, and a controller. The controller has a storage unit storing motor information indicating that the motor is a synchronous motor. When the machine tool stops, while a tool exchange process is carried out, due to electric power outage, operation of a stop button, a value of a drive current of the motor, or a value output from the sensor, the controller uses a command for the synchronous motor, based on the motor information, as a part of a series of commands for recovery of the machine tool, where the tool exchange process is a process in which a tool attached to the spindle is changed with one of the plurality of tools of the tool magazine.
Abstract:
The present disclosure is directed to calibrating position detection for a tool. The tool can use a sensor to detect a first value of a parameter. The tool can use a motor to extend the working member of the tool towards a working surface. The tool can include a base. The tool can detect, with the working member in contact with the working service, a second value of the parameter. The tool can determine a z-axis position of the working member relative to the working surface.
Abstract:
A system for removing one or more three-dimensional workpieces manufactured in additive manufacturing environment from a substrate plate is disclosed. The system includes an adjustable support tooling apparatus, a grinder, a cut-machining device, a work tank, a wire discharge machine and coolant pump filtration system. The adjustable support tooling apparatus is supporting a three-dimensional workpiece while it is being detached from a substrate plate by cutting device. The adjustable support apparatus of the present disclosure is also easily adaptable to various weights and geometric of workpiece. The improved substrate plate preparation machine in additive manufacturing enables to complete a job at one place, wherein the job is cutting the work piece and grinding the uneven cut surface of the substrate plate, thereby the ground substrate plate can be reused.
Abstract:
A working machine comprising a working head (1) having a spindle (10) and which is movable in a xyz working space and further comprising a clamping device (2,3) for clamping pieces (100) to be worked by said machine. The clamping device (2,3) comprises first (21, 31) and second (22,32) clamping means which are movable along a z direction between a first operative position, in which they are in clamping contact with pieces (100) to be worked, and a second non-operative position, in which they are at a distance from said pieces (100), said first (21, 31) and second (22, 32) clamping means being fixed with respect to an xy working plane when in said first operative position and being movable together with said working head (1) in said xy working plane when in said second non-operative position, said first (21, 31) and second (22, 32) clamping means being alternatively moved between said first and second position during a working cycle of said working machine.
Abstract:
A working machine comprising a working head (1) having a spindle (10) and which is movable in a xyz working space and further comprising a clamping device (2,3) for clamping pieces (100) to be worked by said machine. The clamping device (2,3) comprises first (21, 31) and second (22,32) clamping means which are movable along a z direction between a first operative position, in which they are in clamping contact with pieces (100) to be worked, and a second non-operative position, in which they are at a distance from said pieces (100), said first (21, 31) and second (22, 32) clamping means being fixed with respect to an xy working plane when in said first operative position and being movable together with said working head (1) in said xy working plane when in said second non-operative position, said first (21, 31) and second (22, 32) clamping means being alternatively moved between said first and second position during a working cycle of said working machine.
Abstract:
A process load lock apparatus is disclosed. The process load lock apparatus includes a load lock chamber adapted to couple between a mainframe section and a factory interface, the load lock chamber including an entry and an exit each having a slit valve, and a load lock process chamber located at a different level than the load lock chamber at the load lock location wherein the load lock process chamber is adapted to carry out a process on a substrate, such as oxide removal or other processes. Systems including the process load lock apparatus and methods of operating the process load lock apparatus are provided. A lift assembly including a containment ring is also disclosed, as are numerous other aspects.
Abstract:
A new and improved automated gun tool dolly which comprises a plurality of nail guns, such as, for example, three nail guns, which are mounted upon a horizontally movable carriage assembly in a vertically and horizontally staggered mode so as to be disposed within a diagonal array. Movement of the carriage assembly along horizontally oriented guide rails is automatically controlled, such as, for example, by means of a programmable logic controller (PLC), such that the three nail guns are sequentially and continuously disposed at predetermined firing positions at which the nail guns are sequentially fired so as to insert nails within predetermined regions of 2×4 or 2×6 plate, header, or footer members of a wall panel or wall structure.
Abstract:
A device for signaling the position of an orientable sample holder for a microtome is described. The drive system (2) for moving the sample holder is arranged in a housing. At least one rotatably mounted spindle (4), and a nut (5) running on the spindle (4), are provided for moving the sample holder in one spatial direction. The nut (5) comprises a position element (6) identifying the zero position, and an indicating element (11) is associated with the position element (6).
Abstract:
A movable column is adjustable longitudinally and transversely in controlled fashion on a machine bed which defines a longitudinal direction and a transverse direction. A tool spindle is adjustable in controlled fashion on the movable column along a spindle axis normal to both the longitudinal direction and the transverse direction. A clamping axis is defined by a tool support which is rotationally adjustable in controlled fashion about this clamping axis and includes a clamping device through which a material rod can be pushed and in which it can be clamped. A front portion of the material rod, presenting the workpiece to be machined, is disposed within the working range of the tool spindle. A supply device is provided for pushing the material rod through the clamping device. The workpiece support is pivotable in controlled fashion about a pivot axis, normal to both the clamping axis and the spindle axis, in an area which reaches at least from a position of the clamping axis normal to the spindle axis to a position of the clamping axis parallel to the spindle axis. The machine bed includes a pivot space into which the end portion of the material rod remote from the workpiece to be machined can be swung. The supply device is movable into a position at which it does not obstruct the pivoting movement of the material rod.