Abstract:
An oscillation component a×sin(Mωt) (M is the number of sides) that becomes the maximum when a tool cuts the center of a machining surface is superimposed on a reference angular velocity 2ω of the tool. The angular velocity of a tool shaft becomes higher as the tool shaft comes close to the center of the machining surface and becomes the maximum when the tool shaft is at the center of the machining surface. It is possible to adjust the flatness of the machining surface by adjusting an adjustment parameter a of the oscillation component a×sin(Mωt).
Abstract:
An apparatus to produce a letterbox using a strip of material includes: a bender to receive and bend the strip of material into a desired shape of a letterbox including flanges and notches, and the bender to bend at least one end of the strip of material slightly to produce a slight bent; a processor to measure a first plurality of hole positions on a first end of the strip of material and a second plurality of hole positions on flanges of the strip of material, wherein the first plurality of hole positions on the first end are measured to match a first plurality of holes on a second end of the strip of material, wherein the second plurality of hole positions on the flanges are measured to match a second plurality of holes on a base plate; and a puncher to punch the first plurality of holes on at least one of the first end and the second end of the strip of material according to the first plurality of hole positions, and the puncher to punch the second plurality of holes on the flanges according to the second plurality of hole positions.
Abstract:
A method for machining a workpiece, includes: rotating a rotary tool around a rotation axis, the rotary tool including at least one edge positioned on an outer periphery of the rotary tool around the rotation axis; relatively moving the rotary tool toward the workpiece in a first direction so that the at least one edge cuts the workpiece by a predetermined depth while the rotary tool is rotated around the rotation axis; and relatively moving the rotary tool with respect to the workpiece in a second direction that is substantially perpendicular to the first direction and that is inclined to a third direction substantially perpendicular to the rotation axis and the first direction.
Abstract:
A modular vehicle includes a plurality of modular members arranged on a base. The modular members collectively approximate the contour of a vehicle interior or exterior. The modular members are arranged on the base in a close fitting, removable fashion. Each of the modular members has a contoured surface which closely approximates a corresponding portion of a contour of a vehicle interior or exterior. The model vehicle can be reconfigured by simply removing the modular members affected by a design change, reconfiguring the removed modular members and replacing the removed modular members. In another feature, the model vehicle assembly includes a plurality of floor section modular members, wherein one of these floor modular members has a hole defining a reference point. A digitizer which measures the contour of the interior is mounted in the hole. A method of assembling a model for a vehicle is also disclosed.
Abstract:
A machining unit for the production of out-of-center/convex geometries on turned parts using an NC turning machine with at least one horizontal and one vertical machine axis comprises a highly-dynamic, controllable, integral three-phase servomotor having a shaft forming an additional tool axis, as a programmable direct drive for the production of out-of-center/convex geometries on current parts. The additional tool axis is capable of being NC controlled. The shaft has a connecting arm which carries one or more cutting tools for machining the parts. Spaced hydrostatic radial bearings and a hydrostatic axial bearing mount the shaft. A rotational measuring system measures rotation of the shaft. The shaft rotational measuring system, hydrostatic axial bearing and hydrostatic radial bearings as well as the servomotor are mounted in a common housing, with the connecting arm with cutting tools projecting from one side of the housing.
Abstract:
A tool spindle for machining or producing elliptical surfaces, particularly elliptical bores, includes a housing (1) of two parts (31 32), a sleeve (2) rotatable mounted in the housing, a tool carrier shaft (3) rotatably mounted in the interior of the sleeve (2) for carrying a machining tool on the outer end thereof, the tool carrier shaft having an axis of rotation (13) in parallel spaced relationship with respect to the axis of rotation (12) of the sleeve, and a drive mechanism (4, 5, 6, 7, 8, 9, 11, 18, 21, 30) for driving the tool carrier shaft and the sleeve at the same speed in opposite directions.
Abstract:
A method and apparatus for machining a matched set of fixed and orbiting scroll members for use in a scroll compressor. The respective wrap surfaces of the scroll members are simultaneously machined by respective rotating cutting tools. Specifically, rotational and linear movement of the fixed and orbiting scroll members together, synchronized with linear movement of the cutting tools, causes the simultaneous machining of the scroll members along respective wrap surfaces that form a radially inwardly moving sealing line of contact therebetween during compressor operation. Accordingly, any systemic or random deviation from a true involute form during machining of the matching of the matched scroll member set results in complementary deviations in the respective wrap surfaces, whereby a sealed relationship between the wrap surfaces is maintained at such point of deviation during compressor operation.
Abstract:
A machine is provided for cutting oval shapes in planar workpieces, wherein the blade is dynamically oriented so as to maintain its cutting axis constantly tangent to the line of cutting. It utilizes a pivotably mounted cutter head, to which is attached an orienting arm that is arcuately reciprocated by an element moving unidirectionally in a circle, the direction of circular movement being opposite to that in which the cutting head proceeds.
Abstract:
The apparatus described herein is capable of producing a cam which has a cam lobe having opposite sinusoidal surfaces which have at least two rises and at least two dips in 360.degree. of each sinusoidal surface with the rises in one such surface being opposite to the dips in the other such surfaces. These sinusoidal surfaces are designed so that they may be in full, centerline contact with pairs of bearings attached to connecting rods, these bearings being on opposite sides of the cam lobe and at one time being driven in one direction by one of the two pistons in each pair and then at another time in the opposite direction by the other piston in that pair, the two pistons of that pair being connected to each other by the same connecting rod carrying the bearings which are adapted to press against the cam lobe. The surfaces of the cam lobe are designed to avoid friction or binding between the bearings and the cam lobe. An engine for which this cam is particularly useful is described in applicant's U.S. Pat. No. 4,432,310 issued on Feb. 21, 1984.
Abstract:
An apparatus for the out-of-round circumferential machining of workpieces includes a tool holder, a tool bit carried by the tool holder and a motor having a rotor operatively coupled to the tool holder for a radial feed of the tool bit. The motor can be numerically and electronically controlled dependent upon a desired out-of-round contour of the workpieces. The moment of inertia of the tool holder, the tool bit and any other component moving with the tool holder as a unit during feed motion is at the most equal to the moment of inertia of the rotor.