Abstract:
A capped fastener is provided with two outer flanges and a groove therebetween. The cap is crimped around the first outer flange without covering the second outer flange. The end of the cap is crimped in a groove between the first and second outer flanges. A crimping tool and method of crimping are also provided for crimping the end of a cap into a groove between two outer flanges.
Abstract:
In order to optimize a nut and a method for the production of a nut, comprising a nut body which is provided or can be provided with an internal thread and has a polygonal section with a polygonal outer contour which has, on the one hand, edge areas and, on the other hand, key faces which are located between the edge areas and extend in key face planes extending in a manner conforming to standards, in such a manner that it has mechanical properties which are as ideal as possible with as low a weight as possible, it is suggested that the nut body have a plurality of recesses which extend into the nut body in the direction of the bore proceeding from the respective key face planes.
Abstract:
An apparatus to produce a self-piercing and clinch nut includes a first forging die assembly, a second forging die assembly, a third forging die assembly, a transfer mechanism, and a controller. The first forging die assembly subjects a blank to first processing. The second forging die assembly is adjacent to the first forging die assembly, and subjects the blank, which has undergone the first processing in the first forging die assembly, to second processing. The third forging die assembly is adjacent to the second forging die assembly, and subjects the blank, which has undergone the second processing in the second forging die assembly, to third processing. The transfer mechanism transfers the blank between two adjacent forging die assemblies among the first to third forging die assemblies. The controller controls operations of the first to third forging die assemblies and the transfer mechanism.
Abstract:
A method of manufacturing an insert nut having a diamond lattice structure comprises cutting and forging a metal rod and thus preparing a forged article having a flange and a nut body; pressing-in the forged article between a first thread rolling die formed with a first annular die protrusion and a left diagonal die protrusion for forming a left diagonal line of a diamond lattice and a second thread rolling die formed with a second annular die protrusion and a right diagonal die protrusion for forming a right diagonal line of the diamond lattice; and pressing the forged article with the thread rolling dies, and then moving up and down each of the thread rolling dies so that a plurality of diamond lattices and an annular protrusion are arranged on the external circumferential surface of the nut body.
Abstract:
A ball screw is provided in which an outer circumferential formation is formed at a portion facing a ball circulating passage out of outer circumferential surface of a nut. The ball screw includes: a screw shaft having on its outer circumferential surface a screw groove; a nut having on its inner circumferential surface a screw groove facing the screw groove; a plurality of balls rollably loaded in a spiral ball rolling passage formed by both screw grooves; and a ball circulating passage to return the balls from a start point to an end point of the ball rolling passage for recirculation. The ball circulating passage is a concaved groove formed by concaving a groove on a part of the cylindrical inner circumferential surface of the nut by plastic working. Then, a flange is integrally provided at a portion facing the ball circulating passage and the screw groove.
Abstract:
A method of cold forming a self-attaching female fastener (20) which includes deforming a fastener blank (120) having an annular pilot, (122) an annular flange (128) surrounding the pilot and a groove (132) in the flange having cylindrical walls and annular protrusions (152, 154) on the flange and pilot, then deforming the protrusions toward each other to form an annular re-entrant groove (32) having relatively inclined arcuate walls.
Abstract:
An apparatus and method are described for attaching threaded fasteners to a workpiece, including applications where the workpiece has a first side and a second side, where the second side may be blind. The apparatus is a threaded insert for inserting in a polygonally-shaped hole in a work piece. Upon activation by an installation tool, the radius corners of the insert expand and fill the hole corners providing resistance to spinning in the workpiece. At least one of the sides of the insert has a split extending axially along the side, which increases the load bearing area of the secondary flange formed on the second side.
Abstract:
The present invention concerns a nut (1) with a nut body (10) having an enlarged shoulder (15) and a turning plate (20) that is rotationally and inseparably arranged on the nut body, wherein the turning plate is shoved onto the nut body and secured by means of a locking element. According to the invention, the locking element is fashioned as a bead (26) provided on the nut body (10), so that the turning plate (20) is arranged between the enlarged shoulder (15) and the bead (26). Moreover, the present invention concerns a method for fabrication of such a nut, wherein the nut body (10) and the turning plate (20) are made by massive forming and, before or after shoving on the turning plate (20), an upsetting (26) is formed by pressing in the nut body (10), or during the fabrication of the nut body (10) a bead (26) is formed as a single piece in the nut body, so that the turning plate (20) is positioned between the enlarged shoulder (15) and the upsetting or the bead (26).
Abstract:
A Tee nut and method of manufacture is provided which T-nut includes a flange and a hollow barrel extending from the flange. The flange is general circular and has a pair of pawls extending upwardly therefrom, each of which terminates in teeth for engaging a base member. The barrel has an end portion proximal to the flange and a distal end portion. The proximal end portion has internal female threads and the distal end portion has a smooth unthreaded inner surface. The wall thickness of the distal end portion is thinner than the wall thickness of the proximal end portion, and the outer wall diameter is essentially constant for the length of the barrel.The barrel is formed first as an elongate member extending from a strip of material initially having a constant inner diameter and an outer diameter of the proximal portion greater than the outer diameter of the distal portion, with the distal portion having a wall thickness thinner than the wall thickness of the proximal portion. The outer diameter of the distal portion is increased to the same diameter as the outer diameter of the proximal portion while maintaining the same wall thicknesses of both the distal and proximal portions. The internal surface of the proximal portion is threaded with threads terminating at the distal portion and having a lead angle of at least about 80.degree..The terminal end surface of the distal portion is essentially planar and parallel to a flange.