摘要:
An exhaust system 10 for a vehicular lean-burn internal combustion engine comprises: (a) a first substrate monolith 6 comprising a SCR catalyst; (b) at least one second substrate monolith 4 comprising a catalytic washcoat coating comprising at least one platinum group metal (PGM) disposed upstream of the first substrate monolith; and (c) a third substrate monolith 2 disposed between the first substrate monolith and the or each second substrate monolith, wherein at least one PGM on the or each second substrate monolith 4 is liable to volatilise when the or each second substrate monolith 4 is exposed to relatively extreme conditions including relatively high temperatures, and wherein the third substrate monolith 2 comprises a washcoat coating comprising at least one metal oxide for trapping volatilised PGM.
摘要:
An exhaust system 10 for a vehicular lean-burn internal combustion engine comprises: (a) a first substrate monolith 6 comprising a SCR catalyst; (b) at least one second substrate monolith 4 comprising a catalytic washcoat coating comprising at least one platinum group metal (PGM) disposed upstream of the first substrate monolith; and (c) a third substrate monolith 2 disposed between the first substrate monolith and the or each second substrate monolith, wherein at least one PGM on the or each second substrate monolith 4 is liable to volatilise when the or each second substrate monolith 4 is exposed to relatively extreme conditions including relatively high temperatures, and wherein the third substrate monolith 2 comprises a washcoat coating comprising at least one metal oxide for trapping volatilised PGM.
摘要:
A method for countering the adverse effect of contaminating metals on a cystalline aluminosilicate catalyst comprising contacting the catalyst with a metallic passivating agent to effect some passivation of the effects of the contaminant metals and with a reducing gas under suitable conditions. In a preferred embodiment, the catalyst contains antimony.
摘要翻译:一种用于抵抗污染金属对结晶硅铝酸盐催化剂的不利影响的方法,包括使催化剂“INS-S DATE =”20020917“ID =”INS-S-00001“/>与金属钝化剂接触以实现一些钝化 污染金属和在合适条件下的还原气体的影响。 在优选的实施方案中,催化剂含有锑。
摘要:
A catalytic cracking catalyst comprising zeolite, kaolin, alumina and/or silica, antimony and 100-5,000 wt. ppm Ni is disclosed. The Ni-antimony interact in the environment of a fluidized catalytic cracking reactor to increase the magnetic susceptibility of the catalyst, permitting removal of nickel contaminated catalyst by magnetic separation.
摘要:
A zeolite-containing cracking catalyst is passivated with compounds of boron and zirconium, and preferably also antimony. The thus-passivated cracking catalyst is employed in a process for catalytically cracking a hydrocarbon-containing oil feed. In another embodiment, compounds of boron and zirconium, and preferably also antimony, are added to a hydrocarbon-containing oil feed which is catalytically cracked in the presence of a zeolite-containing cracking catalyst.
摘要:
A method of enhancing the activity of a regenerated catalyst for the hydroprocessing of hydrocarbons comprising:(a) applying a modifying element dissolved in a solvent onto the surface of a regenerated catalyst;(b) drying said modified regenerated catalyst to remove all free solvent from said catalyst;(c) optionally, heating said dried modified regenerated catalyst at temperature of about 120.degree. C. to about 1000.degree. C. at a rate of 1.degree.-20.degree. C. per minute, and holding said dried catalyst at a temperature of about 120.degree. C. to about 1000.degree. C. up to 48 hours to provide an enhanced regenerated catalyst; and(d) recovering said enhanced regenerated catalyst.
摘要:
A spent metal-contaminated zeolite-containing catalytic cracking catalyst is reactivated by a process which comprises contacting the spent catalyst with at least one dissolved carboxylic acid and at least one antimony compound.
摘要:
A zeolite-containing catalytic cracking catalyst having been passivated by treatment with an aqueous solution which has been prepared by mixing an antimony oxide, ammonium bifluoride and water, at an atomic ratio of F:Sb in excess of about 6:1, is used in a process for catalytically cracking a hydrocarbon-containing feed, in particular one which contains metal impurities. In one embodiment, the above-described aqueous solution is injected into the feed. In other embodiments, the solution is injected into the cracking zone or into a catalyst regeneration zone.
摘要:
The present invention relates to a spent hydroprocessing catalyst regeneration process wherein the catalyst is subjected to an initial partial decoking step, followed by impregnation with a Group IIA metal-containing component, and then subjected to a final decoking step.
摘要:
A catalytic cracking process especially useful for the catalytic cracking of high metals content feeds including resids in which the feed is cracked in the presence of a catalyst additive comprising a dehydrated magnesium-aluminum hydrotalcite which acts as a trap for vanadium as well as an agent for reducing the content of sulfur oxides in the regenerator flue gas. The additive is used in the form of a separate additive from the cracking catalyst particles in order to keep the vanadium away from the cracking catalyst and so preserve the activity of the catalyst.