Abstract:
A method for controlling an elevator group including at least a first elevator and a second elevator, wherein a counterweight balance of the first elevator differs from a counterweight balance of the second elevator, the method including: controlling the elevator group; determining threshold loads for the first and second elevator separately for up and down direction, a threshold load being dependent of the counterweight balance of the corresponding elevator, wherein the threshold load being a load for which consumed energy per up-down run is approximately zero; and controlling, when allocating an elevator in response to a destination call, route determination for the first and second elevator involves minimizing a load difference from the threshold loads.
Abstract:
Call information can be used for scheduling runs of elevators in a group of elevators. The scheduling is done so that based on the call allocations a schedule of expected movements, accelerations and decelerations can be computed. Then the movements, accelerations and decelerations may be controlled in order to improve energy efficiency or for controlling the movement in such manner that the energy consumption peaks or duration of these peaks is reduced.
Abstract:
An elevator installation with an elevator unit, which is connected with a power supply mains, is controllable by an elevator control with consideration of first control information based on local requirements of users. The elevator control receives from the power supply mains second control information containing status data for the power supply mains. The first and second control information is evaluated by the elevator control. The elevator control influences operation, which is determined by the first control information, of the elevator installation in dependence on the second control information so as to enable desired operation in terms of energy. A monitoring unit, which determines status data for the power supply mains and provides information for the consumers, is connectible with the power supply mains. The monitoring unit creates second control information for the elevator control in dependence on loading of the power supply mains.
Abstract:
An elevator installation includes a control unit and at least one elevator cage in a building with a plurality of stories, wherein elevator control units are arranged on at least two stories. A travel request is communicated to the control unit, wherein a destination story is defined either by the input into the elevator control unit or by an input into a control unit, which communicates the input to the control unit, and wherein the at least one input travel destination and the at least one input travel request are executed by the control unit by means of a collect operating mode. Energy consumption values of the elevator installation for journeys are determined by the control unit. A journey is undertaken to that destination story or travel request story for which the at least one energy consumption value of the elevator installation is smaller.
Abstract:
An elevator system and a method are provided for controlling an elevator group. The elevator system includes an elevator group, which includes at least two elevator cars, which elevator cars are fitted to be moved in the elevator hoistway according to the calls allocated by the control of the elevator group. The elevator system includes a power supply arrangement, for adjusting the power needed to move the elevator cars. An energy storage is connected to the power supply arrangement. The energy storage is fitted in the first operating situation to yield energy for use in moving the elevator car, and in the second operating situation to receive energy released by movement of the elevator car. The elevator system includes a determination of the charging status of the energy storage, and the control of the elevator group is fitted to determine the change in energy that would be caused by the movement according to an allocated call of the elevator cars belonging to the elevator group. The control of the elevator group is fitted to allocate a call by favoring in the allocation an elevator car, the determined change in energy caused by the movement of which best meets the allocation criterion.
Abstract:
When an average wait time is low (23, 24) an elevator car (31-34) is parked (39), unable to answer calls, or if a parameter (45) is low (46), the car is shut-down. If wait time is high, a parked car is assigned the call. If no cars are parked, a shut-down car may be assigned based on RRT. If up running cars can answer the call, the down running cars are excluded.
Abstract:
Provided is an elevator group supervisory control system for an elevator system provided with indicators for a group supervisory control of a plurality of elevators, in which a car reversal, which becomes a cause of irritation for passengers, is curbed. For a hall call registered at an elevator hall which is ahead of a final car call and within a floor range defined bases on building or elevator conditions, an additional assignment is performed on an elevator whose predicted arrival time is the shortest, and which is not in charge of the elevator hall call.
Abstract:
An elevator system for a multistory structure having a plurality of elevator shafts is shown which includes at least one independently movable elevator car in each elevator shaft. A digital computer with memory is used to control elevator cars including the dispatch of cars from terminal floors. A daily control parameter table in memory identifies a plurality of different methods of scheduling dispatch of elevator cars from terminal floors, groups of floors to be serviced by each elevator car, and cars in a shaft to be coupled for tandem operation. The memory is periodically read for selecting for each elevator car one of said methods of scheduling dispatch and for identifying the group of floors to be serviced by the cars. The selected method of scheduling the dispatch of cars is implemented and cars are limited to servicing the selected group of floors. One method of scheduling dispatch includes obtaining a measure of estimated passenger demand for travel in one direction that is incapable of being met by cars currently in service. A passenger loading threshold limit for travel in the one direction is selected which may range from zero to maximum capacity of the elevator car to be dispatched. When the measure of estimated passenger demand for travel in the one direction that is incapable of being met by cars currently in service equals the passenger loading threshold limit a car dispatch signal is issued for dispatch of a car from the terminal floor. Where a plurality of independently-operated cars are included in a hoistway, operation in either a coupled or decoupled manner is provided.
Abstract:
An elevator system has a low rise group of floors and a high rise group of floors and a swing car having doors and car call buttons enabling it to operate in either the low rise or high rise, the swing car being assignable to one or the other rise depending upon the burden, but also being able to accept calls in the other rise in response to a variety of characteristics of traffic within the elevator system. In one embodiment, the swing car is always assigned at the lobby to the low rise but proceeds into the high rise in response to hall calls therein; the swing car can accept down calls in the low rise if there is a high burden in the low rise or a down call has been waiting for a long time, or if the car has a very light load. Dedicated cars may be shut down and only the swing cars used at nights and on weekends. At nights and on weekends, the high rise and low rise can be effectively merged into a single system served by swing cars, thereby to save energy in light traffic.
Abstract:
In a group-management control apparatus for an elevator system with plural elevators capable of serving plural floors, hall calls are allotted to adaptive elevators in accordance with a predetermined hall call allotment algorithm, for the purpose of achieving desired control targets. Plural kinds of the hall call allotment algorithm with different schemes are provided in advance, and the predetermined hall call allotment algorithm is selected therefrom by a reasoning operation, which is executed in accordance with a reasoning rule selected from among a plurality of reasoning rules empirically provided in advance on the basis of the desired control targets and an operating state of the elevators.