Abstract:
An electrothermal film layer manufacturing method, an electrothermal film layer, an electrically-heating plate, and a cooking utensil. An electrothermal film layer is formed, by means of a spraying method, a deposition method or an evaporation plating method, on a surface of an insulation substrate with a temperature of 450 to 600 degrees by using a mixture comprising tin dioxide, antimony and fluorine; and then the electrothermal film layer is manufactured by performing annealing and filming processing on the electrothermal film layer and the insulation substrate. The electrothermal film layer manufacturing method is simple and is convenient to operate, the manufactured electrothermal film layer can convert radiant heat energy into infrared heat energy to radiate, allows heat to be rapidly increased, can reduce temperature loss caused by moisture exhaust, increase the speed of heat energy absorption, and decrease heat energy loss, and accordingly the radiation heat conduction efficiency is effectively improved, the objective of energy conservation is achieved, and the demands of a nation on energy conservation products are better satisfied.
Abstract:
A system for holding and warming food includes a container for holding and warming food. The container consists of 300-series stainless steel. The system further includes an induction heating unit with an induction heating circuit for induction heating the container. The induction heating circuit includes a 120 volt induction coil having 40 or more turns. The induction heating circuit operates at a frequency greater than 30 kilohertz.
Abstract:
A system and method for holding and warming food held in pans or trays having a low relative magnetic permeability, such as 300-series stainless steel, using induction heating.
Abstract:
A cooking apparatus is disclosed, which comprises a first housing provided with an inverter for induction heating; and a second housing including a working coil to which a current supplied from the inverter is transferred, heated as a container for receiving cooking food is arranged thereon, wherein the first housing and the second housing constitute spaces detached from each other.
Abstract:
A thermal barrier for a wireless power transfer system comprises a first surface area (807) for coupling to a power receiver (111) to be powered by a first electromagnetic signal and a second surface area (805) for coupling to a power transmitter (101) providing a second electromagnetic signal. The thermal barrier (801) further comprises a power repeater (803) with a resonance circuit including an inductor and a capacitor. The power repeater (803) is arranged to generate the first electromagnetic signal by concentrating energy of the second electromagnetic signal towards the first surface area (807). The thermal barrier may provide thermal protection of the power transmitter (101) without unacceptable impact on the power transfer operation.
Abstract:
There is provided a heating/cooking equipment capable of accurately determining boiling over. The heating/cooking equipment includes: a top plate (104) connected to a reference potential; a heating unit (105) configured to heat an object to be heated placed on the top plate; an electrode (106) arranged under the top plate; a capacitance detecting unit (107) configured to detect the electrostatic capacitance of the electrode; a boiling over detecting unit (108) configured to detect whether or not a material to be cooked in the object to be heated has boiled over on the top plate, based on a value of the electrostatic capacitance detected by the capacitance detecting unit; and a control unit (109) configured to control the heating operation of the heating unit based on a boiling over detection result from the boiling over detecting unit. The capacitance detecting unit (107) detects a change in the electrostatic capacitance of the electrode by exploiting capacitive coupling between the electrode and the reference potential which is enhanced by increase in a boiled over amount of the material to be cooked with moisture contained in the material to be cooked functioning as a dielectric when the material to be cooked boils over on the top plate.
Abstract:
A heating element, in particular a heating element for inductive heating, having an electrically conductive material which can be introduced into a magnetic field, produced by alternating current, of an induction coil, characterized in that the electrically conductive material is divided into a plurality of individual material sections, which are spaced apart from one another in electrically nonconductive fashion and are connected to form a closed conductor network by electrically conductive connecting elements.
Abstract:
An induction cook top may include a heat management system. The heat management system controls heat produced both internally by the electronic components within the cook top as well as heat produced above the cook top when cooking. The heat management system provides improved air flow past and around the internal electronic components. The cook top features an efficient removal of generated heat and may optionally provide a vented housing and direct airflow into and out of the housing or provide a thermoelectric cooling device which permits a ventless housing.
Abstract:
Heating systems and methods for inductive heating or a combination of resistive and inductive heating. A heater coil is inductively coupled to an article and a current signal is supplied to the heater coil. The heater coil generates a magnetic flux, based on the applied current signal, for inductively heating the article. Current pulses of a certain profile are used to enhance the rate, intensity and/or power of inductive heating delivered by the heating element or coil and/or to enhance the lifetime or reduce the cost of the inductive heating system.
Abstract:
A device wherein food can be warmed by means of induction, said device comprising at least one secondary coil which is formed from a current conductor, whereon at least one heating element is connected. The invention also relates to a device which is used to transfer energy in a device in order to warm food by means of induction, said device comprising a primary coil which is connected to a voltage source and which is formed from a current conductor. According to the invention, the primary and secondary coil is cast into a coil body by casting means, and the insulating casting means exhibits a coefficient of thermal expansion which essentially corresponds to the coil body.