Abstract:
An electrostatic chuck includes a ceramic dielectric substrate; a base plate; and a heater unit which heats the ceramic dielectric substrate. The heater unit includes a first heater element. The first heater element has a plurality of sub-zones. The sub-zones include a first sub-zone. The first sub-zone includes a sub-heater line generating heat by allowing a current to flow, a first sub-power feeding portion feeding a power to the sub-heater line, and a second sub-power feeding portion feeding a power to the sub-heater line. The first sub-zone has a central region located centrally in the first sub-zone and an outer peripheral region located outside the central region when viewed along a Z-direction perpendicular to the first major surface. At least one of the first sub-power feeding portion and the second sub-power feeding portion is provided in the central region.
Abstract:
A control device for a vehicle heater includes: a camera; a heater configured to heat a portion of the window glass located in front of the camera; a temperature sensor configured to acquire a camera temperature; an illuminance acquisition unit configured to acquire an illuminance outside the vehicle; and a control unit configured to determine that a control prohibition condition to prohibit execution of the heater energization control is satisfied when the camera temperature is equal to or larger than a prohibition threshold temperature, execute the heater energization control when execution of the heater energization control is requested, prevent execution of the heater energization control when the control prohibition condition is satisfied, and when the illuminance is lower than a threshold illuminance, set the prohibition threshold temperature to be lower than when the illuminance is equal to or larger than the threshold illuminance.
Abstract:
The present invention relates to a vehicle windscreen with an electrically heatable coating. The vehicle windscreen may extend over a major part of the surface area of the vehicle windscreen and may be electrically connected to at least two low-impedance bus bars lying opposite one another. The vehicle windscreen may include at least one conducting structure only covering the heating area outside a central viewing area, in order to shorten electrically the distance between the bus bars. The vehicle windscreen may be configured such that that current flows in the part of the heating area that is not covered by at least one conducting structure.
Abstract:
The invention relates to a heatable glazing comprising an electrically conductive coating and a data transmission window. The data transmission window comprises a plurality of grids made by ablations in the electrically conductive coating and at least one break line between adjacent grids. At least one of a width “a” of the grids and a distance “b” between adjacent grids is selected to maximise transmission of a predetermined frequency of electromagnetic radiation and to reduce the formation of hot spots. Preferred embodiments conform to a standard size of an ERTICO window and a frequency range from 5 GHz to 6 GHz.
Abstract:
The invention relates to a transparent pane with a transparent heatable coating, which extends at least over a part of the pane surface, in particular over its visual field. The heatable coating is divided by at least one heatable coating-free zone into at least one first heatable coating zone and a second heatable coating zone, wherein the two heatable coating zones are in each case electrically connected to at least two collecting conductors such that after application of a supply voltage that is provided by a voltage source, in each case a current flows over at least one first heating field formed by the first heatable coating zone and at least one second heating field formed by the second heatable coating zone. At least one heating element is disposed in the heatable coating-free zone, which heating element has an ohmic resistance such that by means of application of the supply voltage to the heating element, the pane is heatable in a surface area containing the heatable coating-free zone. The at least one heating element is configured such that by means of application of the supply voltage to the heating element, the pane is also heatable in at least one surface area adjacent the coating-free zone which surface area contains at least one of the collecting conductors.
Abstract:
The present invention relates to a vehicle windscreen with an electrically heatable coating. The vehicle windscreen may extend over a major part of the surface area of the vehicle windscreen and may be electrically connected to at least two low-impedance bus bars lying opposite one another. The vehicle windscreen may include at least one conducting structure only covering the heating area outside a central viewing area, in order to shorten electrically the distance between the bus bars. The vehicle windscreen may be configured such that that current flows in the part of the heating area that is not covered by at least one conducting structure.
Abstract:
A transparent disk that can be electrically heated over a large surface area, comprising: a large-surface-area, electrically conductive, transparent coating, which is applied to a transparent substrate, at least two bus ribbons, which are electrically connected to the electrically conductive transparent coating, at least one locally delimited region free from the coating, wherein at least one heating conductor having two poles is applied inside the free region, and wherein the first pole is electrically connected to the electrically conductive, transparent coating and the second pole is electrically connected to the electrically conductive, transparent coating or a bus ribbon. A method for the production of the disk is also described.
Abstract:
A transparent glazing unit including a resistive heating coating that extends over a substantial part of the glazing unit, in particular over a main viewing field, and is electrically connected to at least two busbars such that, when an electrical supply voltage is applied between the busbars, a current flows, which heats a heating field in the coating. The heating field includes at least one semiresistive region in direct contact with at least one busbar.
Abstract:
A windshield glass including a transparent conductive film and bus bars for feeding electricity thereto. In the windshield glass, at least one film-free portion is formed in the transparent conductive film and is arranged so as to lie in at least a part of a wiper blade stopping area in the windshield glass or is arranged in the vicinity of the area. This configuration relatively increases the amount of electric current passing through a unit area of the transparent conductive film at least in a part of the wiper blade stopping area.
Abstract:
Methods and devices for producing a composite pane having a functional coating are presented. The functional coating is applied to part of a surface of a base pane, and a first pane is cut out from the base pane while introducing a frame-shaped peripheral coating-free region into the functional coating having an inner region that is not adjacent a side edge of the first pane. The surface of the first pane with the functional coating is then bonded via a thermoplastic intermediate layer to a surface of a second pane.