Abstract:
An access point (AP) includes a transmitter (TX) circuit, a receiver (RX) circuit, and a control circuit. The control circuit negotiates with at least one another AP via the TX circuit and the RX circuit, for setting up a coordinated service period (SP). In addition, a method for setting up the coordinated SP in a multiple AP environment includes: sending a request frame from a first AP to at least one second AP, wherein the request frame includes a plurality of SP parameters; receiving a response frame generated from the at least one second AP in response to the request frame; and in response to the response frame, setting up the coordinated SP by sending a setup frame to the at least one another AP, wherein the setup frame is set by updating at least a portion of the plurality of SP parameters.
Abstract:
The disclosed technology is directed towards routing, by a mobile network operator, a message to a messaging hub associated with a partner carrier or to the partner carrier itself. In response to receiving a message to reroute, a data store (e.g., an ENUM database) is queried to attempt to obtain information corresponding to the routing. For example, when the query response includes a regular expression that specifies a domain, the domain is evaluated against a data structure of respective messaging hubs associated with respective domains. If the returned domain is matched such that an associated messaging hub is identified, the message is routed to the identified messaging hub; otherwise a mobile network partner carrier is determined based on the telephone number of the message recipient, and the message is routed to the determined partner carrier.
Abstract:
Generation and management of a communication path between a plurality of information processing devices are properly performed.An information processing device is equipped with a communication unit and a control unit. The communication unit performs exchange of a signal for generating or updating of a multi-hop communication path using wireless communication with another information processing device. In addition, the control unit performs control for updating path information regarding the communication path set through the exchange of the signal for generating or updating of the multi-hop communication path before the path information is destroyed.
Abstract:
A dynamic crossband link method is provided, which includes utilizing a local forwarding module to transmit and receive packet data to and from a client device via a first frequency band; obtaining a plurality of communication quality indicators corresponding to a plurality of uplink forwarding modules; and determining to transmit the packet data to a wireless access device and receive the packet data from the wireless access device via one of the plurality of uplink forwarding modules according to the plurality of communication quality indicators.
Abstract:
A first mobile station (MS) in a disruption tolerant network (DTN) reports, to an infrastructure network, contact pattern information comprising identities and indications of times at which the other MSs and infrastructure devices were determined to be within direct communication range of the first MS. The first MS then receives a set of DTN routing rules for routing communications to any target device via the DTN network. The first MS detects a first communication for transmission to a target device via the DTN network and identifies as a function of the set of the DTN routing rules, one or more but less than all intermediary MSs for storing and forwarding the first communication towards the target device. The first MS then transmits the first communication to the identified one or more intermediary MSs when they are determined to be within direct wireless communication range.
Abstract:
Disclosed herein are systems and methods directed to routing in the wireless mesh network (WMN) with multi-beam directional antennas (MBDAs). The disclosed systems and methods describe Ripple-Diamond-Chain (RDC) shaped routing, systematic link quality modeling and artificial intelligence (AI) augmented path link selection. In simulations, real-time video as well as other types of traffic types are used to validate the high-throughput, quality of service (QoS)-differentiated, multi-beam routing efficiency of the disclosed systems and methods, as well as the intelligent path determination in dynamic WMN environments.
Abstract:
In one embodiment, an initial path is established in a wireless deterministic network between a source and a destination through one or more intermediate nodes, which are typically informed of a required metric between the source and the destination for communicating a packet. The initial path is locally (e.g., without contacting a path computation engine) reconfigured to bypass at least one of the intermediate nodes creating a new path, with the new path meeting the requirement(s) of the metric. Note, “locally reconfiguring” refers to the network nodes themselves determining a replacement path without reliance on a path computation engine or other entity (e.g., network management system, operating support system) in determining the replacement path. In one embodiment, a network node not on the initial path replaces a node on the initial path while using the same receive and send timeslots used in the initial path.
Abstract:
The present invention relates to a health care method using a light therapy device and an auxiliary therapeutic unit, the health care method can relax the mind and body of a user by controlling the light therapy device and the auxiliary therapeutic unit on the basis of a user's condition or changes in the user's condition, and accessorily, the mental state of the user.
Abstract:
Various embodiments implement a set of low overhead mechanisms to enable on-demand routing protocols. The on-demand protocols use route accumulation during discovery floods to discover when better paths have become available even if the paths that the protocols are currently using are not broken. In other words, the mechanisms (or “Route Optimizations”) enable improvements to routes even while functioning routes are available. The Route Optimization mechanisms enable nodes in the network that passively learn routing information to notify nodes that need to know of changes in the routing information when the changes are important. Learning routing information on up-to-date paths and determining nodes that would benefit from the information is performed, in some embodiments, without any explicit control packet exchange. One of the Route Optimization mechanisms includes communicating information describing an improved route from a node where the improved route diverges from a less nearly optimal route.
Abstract:
Traditional computer networks have been designed with the need for highly reliable packet delivery. This is largely handled by a centrally managed simple send-acknowledge protocol. In a highly dynamic mesh network, these methods are inadequate to ensure the most reliable packet delivery. This invention uses the natural redundancy of routes in a mesh and other techniques to increase the reliability of a network, even as the paths to any given node are dynamic in nature.