摘要:
In one embodiment, an initial path is established in a wireless deterministic network between a source and a destination through one or more intermediate nodes, which are typically informed of a required metric between the source and the destination for communicating a packet. The initial path is locally (e.g., without contacting a path computation engine) reconfigured to bypass at least one of the intermediate nodes creating a new path, with the new path meeting the requirement(s) of the metric. Note, “locally reconfiguring” refers to the network nodes themselves determining a replacement path without reliance on a path computation engine or other entity (e.g., network management system, operating support system) in determining the replacement path. In one embodiment, a network node not on the initial path replaces a node on the initial path while using the same receive and send timeslots used in the initial path.
摘要:
A technique efficiently load balances traffic engineering (TE) label switched paths (LSPs) from a head-end node to a tail-end node of a computer network. The novel load balancing technique identifies (e.g., at the head-end node or a path computation element, PCE) a set of paths with equal costs from the head-end node to the tail-end node, where each path of the set is composed of one or more associated links. “Link values” such as, e.g., the number of unconstrained TE-LSPs on the link, the amount of available bandwidth on the link, or the percent of total available bandwidth already in use on the link, are applied to each link of each path. The most restrictive link values (link availability) of each path of the set, such as, e.g., the link with the lowest amount of available bandwidth, etc., are then compared. Upon comparing the link availability, the novel technique load balances established and/or new TE-LSPs from the head-end node to the tail-end node over the set of paths accordingly.
摘要:
In one embodiment, a Transit Information Bloom Filter (TIBF) signal component is generated for use with a routing protocol control message, the TIBF signal component identifying at least one parent node for a corresponding routing topology. The TIBF signal component is encoded in a generated Bloom filter. The parameters of the generated Bloom filter are based at least on one parent node to be encoded and a desired false positive rate for the Bloom filter. The address for each parent node is also encoded in the Bloom filter.
摘要:
In one embodiment, a network device selectively operates according to a sparse multicast mode where the network device stores individual devices interested in one or more multicast groups and distributes corresponding multicast group traffic based on the individual devices. Alternatively, the network device selectively operates according to a dense multicast mode where the network device maintains a list of the one or more multicast groups in which at least one device is interested and distributes corresponding multicast group traffic through broadcasting. By determining one or more resource-related characteristics, the network device may then select between operation in the sparse multicast mode and the dense multicast mode based on the resource-related characteristics.
摘要:
In one embodiment, a particular device determines a selected link from the particular device toward a root device in a computer network, wherein traffic destined away from the root device via the particular device utilizes the selected link in reverse. By monitoring a link quality of the selected link in reverse based on received traffic over the selected link, the particular device may determine whether the link quality is below a lower threshold. In response to the link quality being below the lower threshold, the particular device activates use of keepalive messages from the particular device over the selected link.
摘要:
According to one or more implementations of the disclosure, packets may be transmitted in a low power and lossy network (LLN) by receiving, on a first node, a message from a sending node, and by activating a critical message configuration to be applied in routing the message. A message identifier (e.g., signature) for the message may also be received or gleaned. The message identifier can be compared at the first node to a list of stored message identifiers, created based on routing history, to determine if the message has already been received. As such, if the message has not been received at the first node previously, a first parent and a second parent for the message are identified and the message, along with the critical message indication, can be transmitted to the first parent and the second parent, thereby achieving redundancy in the routing of the message.
摘要:
In one embodiment, a path computation element (PCE) in a computer network receives one or more path computation requests (PCReqs), and records a time of each PCReq and the corresponding requested bandwidth. Based on this information, the PCE may determine a traffic profile of the computer network, and may augment a traffic engineering database (TED) with requested bandwidth according to time based on the traffic profile. As such, prior to a particular time, the PCE may determine placement of tunnels within the traffic profile for the particular time.
摘要:
In one embodiment, a network server layer provides disjoint channels in response to client-layer disjoint path requests. For example, the network layer can be an optical network, and the client layer may be a packet switching layer (e.g., label switching, Internet Protocol). In one embodiment, a server-layer node receives a client-layer disjoint path request to provide a server-layer channel through a server-layer network. The client-layer disjoint path request includes an identifier corresponding to an existing client-layer path that traverses a current channel through the server-layer network that does not include the server-layer node. The server-layer network determines a particular channel through the server-layer network that is disjoint to the current channel based on route information of the current channel, and then signaling is performed within the server-layer network to establish the particular channel.
摘要:
In one embodiment, certain nodes in a computer network maintain a plurality of routing topologies, each associated with a different corresponding delay (e.g., dynamically adjusted). Upon receiving a packet with an indicated delay budget at a particular node, the node updates the delay budget based on an incurred delay up to and including the particular node since the indicated delay budget was last updated, and selects a particular routing topology on which to forward the packet based on the updated delay budget and the corresponding routing topology delays. The packet may then be forwarded with the updated delay budget on the selected routing topology, accordingly.
摘要:
In one embodiment, a system comprises a plurality of minimalistic data collection nodes in a computer network, the minimalistic data collection nodes configured to generate sensed data values of a particular type and to communicate the data values within the computer network in substantially real-time using distributed data acquisition (DA) packets specific to the particular type of the data values. The system also comprises a plurality of capable data collection nodes in the computer network, the capable data collecting nodes configured to store the data values of the minimalistic data collection nodes from the DA packets. One or more points of use of the system may be configured to request the data values, wherein one or more particular capable data collection nodes of the system are configured to service the request in substantially real-time on behalf of the minimalistic data collection nodes with the stored data values.