Abstract:
A method and a communication receiver have been described for calculating log-likelihood ratios in a communication receiver. The log-likelihood ratio is calculated for each bit of one or more subsymbols of each of the one or more spatial streams by computing effective noise on one or more spatial streams after considering noise terms resulting from MIMO detection estimates of the subsymbols on each spatial stream. Finally, signal to noise ratio is determined for one or more spatial streams from the effective noise and scaling bit log-likelihood ratios with the signal to noise ratio.
Abstract:
The computation of code-specific channel matrices for an Assisted Maximum Likelihood Detection (AMLD) receiver comprises separately computing high rate matrices that change each symbol period, and a low rate matrix that is substantially constant over a plurality of symbol periods. The high and low rate matrices are combined to generate a code-specific channel matrix for each receiver stage. The high rate matrices include scrambling and spreading code information, and the low rate matrices include information on the net channel response and combining weights. The low rate matrices are efficiently computed by a linear convolution in the frequency domain of the net channel response and combining weights (with zero padding to avoid circular convolution), then transforming the convolution to the time domain and extracting matrix elements. Where the combining weights are constant across stages, a common code-specific channel matrix may be computed and used in multiple AMLD receiver stages.
Abstract:
A method of improving sensitivity in the demodulation of a received signal by a receiver over an arbitrary measurement time epoch, said method comprising the steps of correlating said received signal with a local replica of pseudo noise code in a coherent fashion creating a correlation signal and utilizing a Viterbi phase state keying trellis demodulation with a variable resolution of phase states over 0 to 360° to demodulate the radio frequency phase trajectory of said correlation signal throughout the measurement time epoch for improving sensitivity in the demodulation of a received signal.
Abstract:
Techniques for receiving a MIMO transmission are described. A receiver processes received data from multiple receive antennas in multiple stages. A first stage performs front-end filtering/equalization on the received data with a front-end filter to process non on-time signal components in the multiple received signals. A second stage processes the filtered data with one or more combiner matrices to combine on-time signal components for multiple transmitted signals. For a MIMO-CDM transmission, a single front-end filter may be used for all channelization codes, and a different combiner matrix may be used for each channelization code. Partitioning the receiver processing into multiple stages simplifies derivation of the front-end filter and combiner matrices while achieving good performance. The front-end filter and combiner matrices may be updated separately at the same or different rates.
Abstract:
This disclosure describes equalization techniques for spread spectrum wireless communication. The techniques may involve estimating a channel impulse response, estimating channel variance, and selecting filter coefficients for an equalizer based on the estimated channel impulse response and the estimated channel variance. Moreover, in accordance with this disclosure, the channel variance estimation involves estimation of two or more co-variances for different received samples. Importantly, the equalizer is “fractionally spaced,” which means that the equalizer defines fractional filtering coefficients (filter taps), unlike conventional equalizers that presume that filter coefficients are defined at integer chip spacing. The techniques can allow the equalizer to account for antenna diversity, such as receive diversity, transmit diversity, or possibly both.
Abstract:
A method and system of improving sensitivity in the demodulation of a received signal over an arbitrary measurement time epoch, the method comprising the steps of: correlating the received signal in a coherent fashion (80); and utilizing a Viterbi phase state keying trellis demodulation with a variable resolution of phase states over 360° to demodulate the radio frequency phase trajectory of the signal throughout the measurement time epoch (70); and the system comprising a receiver for receiving a direct sequence spread spectrum signal, the receiver comprising: an antenna (10) for receiving the direct sequence spread spectrum signal; a downconverter (40) for downconverting the received signal, producing a downconverted signal; an analog to digital converter (60) to convert the downconverted signal to a digital signal; a despreader (80) for despreading and coherently correlating the digital signal to a known signal, creating a despread signal; and a processor (70) for applying a Viterbi algorithm to the despread signal.
Abstract:
Methods and apparatus are presented herein for determining log likelihood ratios (LLRs) for code symbols. Pilot and code symbols are transmitted over diversity channels, which can be modeled as a slowly time varying system. A formulation for a multipath gain vector is derived herein based on the slowly time varying model. The multipath gain vector is then solved using iterative procedures. Using the solved multipath gain vector, the LLRs for code symbols are computed.
Abstract:
A processing scheme for digital storage media using multi-user detection to separate tracks of data or remove interference from neighboring tracks. In one embodiment, data is written on a plurality of tracks positioned sufficiently close together so that multiple tracks are detected simultaneously by the read access sensor. Upon scanning the surface for data, the read element simultaneously receives the data signals from a plurality of tracks. Joint detection signal processing resolves the interference and data bits from the multiple sensed tracks, enabling closer packing of data with minimal guard space.
Abstract:
A method for estimating a channel impulse response of a mobile radio channel is described. The mobile radio channel is accessed over a wide bandwidth by a code division multiplex method. A second mobile radio channel continuously transmits sequences to a multiplicity of mobile radio receivers, and the sequences are known to each of the multiplicity of mobile radio receivers. The delay parameters of the mobile radio channel are estimated using the sequences transmitted via the second mobile radio channel. The mobile radio receiver is adjusted in accordance with the delay parameters estimated and weighting factors of the mobile radio channel are determined.
Abstract:
A Parameter Estimator for accurately estimating signature responses of multiple co-channel interfering digital transmission signals. The Parameter Estimator is used in a Multiuser Detection (MUD) Receiver to significantly reduce the error rate. The Parameter Estimator comprises a plurality of software components, including a Signature Waveform Estimator, Training Sequence Locator, Noise Estimator, Active Users Tester, Initial Transformation Matrix Builder, a Transformation Matrix Rebuilder, and a Transformation Matrix Selector, and generates an estimated noise power, a training sequence index and estimated signature waveforms.