Abstract:
A system, circuit and method for converting a differential voltage signal including a high common mode voltage component to a ground referenced signal are disclosed. For example, a circuit for converting a differential voltage signal including a high common mode voltage component to a ground referenced signal is disclosed, which includes a comparator configured to receive a differential voltage signal including a high common mode voltage component and output a digital signal associated with the differential voltage signal, a level shifter configured to receive the digital signal and shift the level of the digital signal to a low level, an integrator configured to receive the digital low level signal and output a ramping voltage associated with the low level signal, and an analog-to-digital converter configured to receive the ramping voltage and output a digital bit-stream associated with the ramping voltage.
Abstract:
A method of configuring an analog-to-digital converter (ADC) includes configuring the ADC to operate in one of a low-pass filter mode and a band-pass filter mode according to a value of a control signal. In at least one embodiment, the method further includes configuring an integrator gain of the ADC and a feed-forward gain of the ADC based on selection of one of a low-intermediate frequency (LIF) mode and a zero-intermediate frequency (ZIF) mode.
Abstract:
A signal processing circuit has an analog to digital converter (31) for providing a digital signal to a processor (15) from an analog input signal that is susceptible to variations in signal power, e.g. from a radio front end (12). The device has a variable gain amplifier (13) controlled by a gain control signal based on detected signal strength. The analog to digital converter has a loop comprising a loop filter for processing the input signal. A signal strength detection circuit (32) is provided for generating the gain control signal, which signal strength detection circuit has loop signal detector for detecting the signal strength from the loop. Hence a received signal strength indicator RSSI is directly coupled to the analog to digital converter (31), avoiding the delay of signal strength detection in the digital processor.
Abstract:
A CMOS image sensor including a plurality of pixels, each including: a photodiode; a sigma-delta modulator of order p, p being an integer greater than or equal to 1, capable of delivering a binary digital signal representative of the illumination level of the photodiode; and a configurable connection circuit enabling to couple the sigma-delta modulator of the pixel to a sigma-delta modulator of another pixel, so that the modulators of the two pixels form with each other a sigma-delta modulator of order greater than p.
Abstract:
Continuous-time MASH sigma-delta ADC with a first modulator with 1.5 bit and a second modulator with 1 bit each receiving also the feedback from the other modulator. Sampling is at higher rate at the second modulator and decimation is performed before summing its output to the output of the first modulator.
Abstract:
A delta-sigma modulator is disclosed which has a filter comprising a filter input, two LC resonators (LC1-1, LC1-2), and two switches (CBT/CGT). An input of each one of the two switches is connected to the filter input and a corresponding output of each one of the two switches is connected to a corresponding one of said LC resonators. Each one of the two switches is individually controllable for selectively connecting the corresponding one of the LC resonators with the filter input. The invention also relates to a method for changing the mode of operation of a delta-sigma modulator.
Abstract:
A system includes an analog-to-digital modulator to convert at least one analog input signal into at least one digital output signal. The system also includes a processing device to set an operational order and a quantization level of the analog-to-digital modulator. The analog-to-digital modulator converts the analog input signal into the digital output signal according to the operational order and the quantization level.
Abstract:
A signal receiver processing circuit is for isolating a desired signal from analog input signal that is susceptible to variations in signal power, e.g. from a radio front end (12). The device has a variable gain amplifier (13) and an analog to digital converter (14) for providing a digital signal to a digital signal processor (15), the digital signal processor including a digital filter. The device has a control unit (16) for adjusting a filtering accuracy of the analog to digital converter (14) and/or the digital signal processor unit (15) in dependence of a signal quality of the input signal.
Abstract:
A Sigma-Delta modulator(10) comprises a signal put(34) coupled to a forward filter comprising a series connection of a plurality of N summing stages(28, 30, 32), where N is an integer of at least 2, alternating with a corresponding plurality of integrating stages(40, 42, 44) and an analogue to digital converter(ADC)(18) having an input coupled to an output of the Nth integrating stage(44) and an output. A feedback filter comprises a feedback coupling from the output of the ADC(18) to a digital to analogue converter(DAC)(26) which is coupled to an input of each of the summing stages by way of respective weights(46, 48, 50). Control means(66) including switching means (58, 64) are provided for changing the order of the modulator. To reduce the order and increase the bandwidth, the control means by-passes the first(40) of the integrating stages and uses the second(42) of the integrating stages as a first of the integrating stages and vice versa to increase the order and decrease the bandwidth.
Abstract:
A CMOS image sensor including a plurality of pixels, each including: a photodiode; a sigma-delta modulator of order p, p being an integer greater than or equal to 1, capable of delivering a binary digital signal representative of the illumination level of the photodiode; and a configurable connection circuit enabling to couple the sigma-delta modulator of the pixel to a sigma-delta modulator of another pixel, so that the modulators of the two pixels form with each other a sigma-delta modulator of order greater than p.