Abstract:
The present technology relates to a signal processing apparatus and method capable of increasing a harmonic rejection ratio while suppressing an increase in power consumption.In one aspect of the present technology, two local signals having a 1/3 duty ratio and phases mutually shifted by a 1/2 period are mixed with each signal of a differential signal, and a difference between results of the mixing of the two local signals is calculated. The present technology can be applied to, for example, a signal processing apparatus, a transmission apparatus, a reception apparatus, a communication apparatus, an electronic apparatus having a transmission function, a reception function, or a communication function, or a computer that controls those apparatuses.
Abstract:
A configurable passive mixer is described herein. According to one exemplary embodiment, the passive mixer comprises a clock generator, a controller, and a plurality of passive mixer cores connected in parallel. The clock generator comprises a local oscillator drive unit for each passive mixer core. The controller varies an effective transistor size of the passive mixer by separately configuring each of the passive mixer cores to enable/disable each passive mixer core. For example, the controller may selectively enable one or more of the passive mixer cores to vary the effective transistor width of the passive mixer. As the performance requirements and/or the operating communication standard change, the controller may re-configure each passive mixer core.
Abstract:
One embodiment described is an apparatus that includes an active device structured in a semiconductor body. The semiconductor body may include a gate terminal to receive a switched bias signal, and a bulk terminal to receive a forward body-bias signal. A first circuit portion may be coupled to the gate terminal to provide the switched bias signal, and a second circuit portion may be coupled to the bulk terminal to provide the forward body-bias signal.
Abstract:
The present invention is applied to a frequency converter used for a receiver. The frequency converter according to the present invention includes an LO signal generator (11) that generates an LO signal and outputs the LO signal; and a mixer (10) that multiplies a received signal that has been band-limited to a usable bandwidth of said receiver by the LO signal so as to convert the frequency of the received signal and outputs the resultant signal. Said LO signal generator is capable of varying a phase resolution.
Abstract:
Some embodiments of the invention relate a circuit having a first and a second electrically connected voltage domains, respectively biased at different supply voltages (e.g., the first voltage domain biased at a low bias voltage and the second voltage domain biased at a second, different supply voltage). The apparatus further comprises a first DC current source coupled to one of the voltage domains (e.g., the first voltage domain having a low DC voltage potential) and a second DC current source coupled to the other voltage domain (e.g., the second voltage domain having a high DC voltage potential). The first and second DC current sources are configured to provide a DC cancellation current having a value that cancels a DC current generated by the potential difference between the first and second voltage domains.
Abstract:
In one embodiment, the present invention includes a method for receiving a radio frequency (RF) signal and mixing the RF signal with a master clock to obtain a mixed signal, cyclically rotating the mixed signal to each of N gain stages for at least one cycle of the master clock, and summing the outputs of the N gain stages to provide an output signal.
Abstract:
A mixer-amplifier of an RF signal including at least an amplifier circuit and a mixing circuit controlled at a local oscillator frequency, for amplifying a signal applied on at least one input terminal and converting a first frequency of this signal into a second, lower, frequency, and including a reverse feedback loop switched at the local oscillator frequency.
Abstract:
A variable operational mode transceiver device formed with an integrated circuit having a semiconductor material substrate supporting a feedback oscillator having a signal power divider electrically coupled to said feedback oscillator output, and a signal frequency multiplier electrically coupled to said signal power divider. A signal mixer has a pair of inputs of which one is electrically coupled to that remaining one of said pair of outputs of said signal power divider.
Abstract:
A method and system for output common mode control for reducing DC offset for an IF mixer that downconverts a received signal to DC without introducing additional offset is provided. Aspects of the method may comprise averaging signals having an output common mode DC level, which are generated from an output of the mixer. This determined average may then be compared to a reference voltage. The reference voltage may be an output common mode DC level required for baseband processing. The output common mode DC level may be corrected at an input of the mixer for signals that may subsequently be generated from an output of the mixer by utilizing results from the comparison. The corrected common mode DC offset level may be fed back to an input of the mixer.