Abstract:
A transmitter for transmitting data in a communication system includes: a serial/parallel (S/P) conversion unit configured to convert data into an I signal and a Q signal; multiplication units configured to multiply the converted I and Q signals by orthogonal sequences, respectively; conversion units configured to Hilbert-transform the I and Q signals multiplied by the orthogonal sequences; addition units configured to add the I and Q signals multiplied by the orthogonal sequences and the Hilbert-transformed Q and I signal, respectively; and an intermediate frequency (IF)/radio frequency (RF) unit configured to up-convert the added I signal and the added Q signal and transmit the converted I and Q signals.
Abstract:
The embodiments of the present invention provide a configurable homodyne/heterodyne RF receiver including first and second mixers. The configurable homodyne/heterodyne RF receiver functions as a homodyne receiver when the first and second mixers are configured to operate in parallel, and as a heterodyne receiver when the first and second mixers are configured to operate in series. The embodiments of the present invention further provides an RFID reader employing the configurable homodyne/heterodyne RF receiver to facilitate a listen-before-talk function.
Abstract:
In one aspect, the present invention includes a method for receiving an amplitude modulation (AM) signal in a receiver and performing a coordinate rotation digital computer (CORDIC) operation in obtaining a demodulated AM signal. The demodulated AM signal may be obtained from a magnitude output of the CORDIC operation or as a real output of a multiplication between a complex baseband signal and a demodulating carrier signal generated in a feedback loop.
Abstract:
In a receiver, a synchronization circuit (MIX2, OSC, C1, R1) provides a set of oscillator signals (OSI, OSQ) that are synchronized with a carrier of an amplitude-modulated signal. The set of oscillator signals (OSI, OSQ) comprises a quadrature oscillator signal (OSQ), which is substantially 90° phase shifted with respect to the carrier of the amplitude-modulated signal. A quadrature mixer (MIX2) mixes the quadrature oscillator signal (OSQ) with the amplitude-modulated signal so as to obtain a quadrature mixer output signal (MO2a). A phase-error corrector (PEC) adjusts the phase of the oscillator signals in response to a variation in the magnitude of an alternating current component (AC) in the quadrature mixer output signal (MO2a).
Abstract:
A receiver circuit that includes a direct conversion receiver that receives a modulated signal, and generates an in-phase differential signal and a quadrature-phase differential signal. The receiver circuit includes an in-phase branch that processes the in-phase differential signal, and a quadrature-phase branch that processes the quadrature-phase differential signal. Each branch includes an amplifier and a summer. The amplifier is configured to receive and amplify the respective in-phase or quadrature-phase differential signal. The summer receives the resulting amplified differential signal and sums the signals to generate a single signal. A log amplifier receives the summed in-phase and quadrature-phase signal, and generates an RSSI signal that is proportional to the log of the difference between the two summed signals. The data may then be extracted based on the amplitude of the RSSI signal.
Abstract:
An RFID circuit comprising an RF carrier signal source, a hybrid coupled to the RF carrier signal source operable to generate first and second phase-shifted RF carrier signals, first and second mixers coupled to the hybrid each operable to multiply a respective one of the first and second carrier signals and a received backscattered modulated carrier signal and generate first and second baseband signals, respectively, and first logic coupled to the first and second mixers operable to select one of the first and second baseband signals having a larger amplitude as a demodulated RFID output signal.
Abstract:
An apparatus for continuous phase quadrature amplitude modulation and demodulation to continuously process phases and amplitudes at symbol change points in an M-ary quadrature amplitude modulation method. The apparatus includes a continuous phase quadrature modulator having a first multiplier multiplying an I-channel by a cosine wave weighted function, a second multiplier multiplying an output signal of the first multiplier by a cosine wave of a carrier frequency, a delay delaying a Q-channel by a predetermined time, a third multiplier multiplying the Q-channel by a sine wave weighted function, a fourth multiplier multiplying an output signal of the third multiplier by the sine wave of the carrier frequency, and an adder adding an output signal of the second multiplier and an output signal of the fourth multiplier; and a continuous phase quadrature demodulator having a fifth multiplier multiplying the I-channel by the cosine wave of the carrier frequency, a sixth multiplier multiplying a signal from the fifth multiplier by the cosine wave weighted function, a first integrator and sampler integrating a signal from the sixth multiplier for the symbol duration time, a seventh multiplier multiplying the Q-channel by the sine wave of the carrier frequency, an eighth multiplier multiplying a signal from the seventh multiplier by the sine wave weighted function, and a second integrator and sampler integrating a signal from the eighth multiplier by the symbol duration time.
Abstract:
The present invention relates to a method and a device for the I/Q demodulation of modulated RF signals. The I/Q demodulator (60) has a first input for the RF signal (61) to be demodulated and a second input for a RF signal (62) originating from a local oscillator (20). The demodulator (60) combines the two RF signals (61,62) to generate three output signals supplied to three power detectors. In a combination unit (70) the three power signals of the power detectors are merged in two signal branches wherein after passing an A/D converting (72) and digital processing unit (73) one signal is the I component and the other one is the Q component of the received modulated RF signal (61).
Abstract:
An apparatus for continuous phase quadrature amplitude modulation and demodulation to continuously process phases and amplitudes at symbol change points in an M-ary quadrature amplitude modulation method. The apparatus includes a continuous phase quadrature modulator having a first multiplier multiplying an I-channel by a cosine wave weighted function, a second multiplier multiplying an output signal of the first multiplier by a cosine wave of a carrier frequency, a delay delaying a Q-channel by a predetermined time, a third multiplier multiplying the Q-channel by a sine wave weighted function, a fourth multiplier multiplying an output signal of the third multiplier by the sine wave of the carrier frequency, and an adder adding an output signal of the second multiplier and an output signal of the fourth multiplier; and a continuous phase quadrature demodulator having a fifth multiplier multiplying the I-channel by the cosine wave of the carrier frequency, a sixth multiplier multiplying a signal from the fifth multiplier by the cosine wave weighted function, a first integrator and sampler integrating a signal from the sixth multiplier for the symbol duration time, a seventh multiplier multiplying the Q-channel by the sine wave of the carrier frequency, an eighth multiplier multiplying a signal from the seventh multiplier by the sine wave weighted function, and a second integrator and sampler integrating a signal from the eighth multiplier by the symbol duration time.
Abstract:
An apparatus and method are provided that compensates for the problematic time-varying DC offset by effectively eliminating a near-channel amplited modulated interferer from a signal. The apparatus includes a first channel estimator for estimating a plurality of first channel filter taps null using a first signal model St, and a second channel estimator for estimating a plurality of second channel filter taps {tilde over (H)} using a second signal model {tilde over (S)}t. The apparatus also includes a processor for selecting which of the first signal model St and the second signal model {tilde over (S)}t is to be used or was used to substantially eliminate the near-channel amplitude modulated interferer from the received signal. The apparatus can be a mobile phone, base station, direct conversion receiver, or communications system (for example).