摘要:
A method of controlling an electric motor includes pulsing the electric motor and phase shifting the modulation frequency. Pulsing the electric motor at the modulation frequency propels a vehicle to increase efficiency of the electric motor. Phase shifting the modulation frequency includes phase shifting between 0 degrees and 180 degrees to reduce vibrations induced in the vehicle.
摘要:
In a control device controlling a drive circuit that drives an in-vehicle electric motor based on an output voltage of a DC power source, a capacitor for stabilizing the output voltage is disposed between the DC power source and the drive circuit, and a relay switch is disposed between the DC power source and the capacitor. The control device includes: an anomaly determining device that determines whether an anomaly occurs in a vehicle; and a discharge control device that controls the drive circuit to generate a torque at the electric motor based on an output voltage of the capacitor in a state where the relay switch disconnects between the DC power source and the capacitor when the anomaly determining device determines that the anomaly occurs in the vehicle.
摘要:
A system for securing and wirelessly charging a chargeable device on a charger, particularly in a vehicle, is provided. The system includes at least one transmitting coil in proximity to a charging surface and an adjustable retaining assembly configured to substantially engage at least a portion of a perimeter of the chargeable device to position the chargeable device on the charging surface.
摘要:
A variable-flux motor drive system including a permanent-magnet motor including a permanent magnet, an inverter to drive the permanent-magnet motor, and a magnetize device to pass a magnetizing current for controlling flux of the permanent magnet. The permanent magnet is a variable magnet whose flux density is variable depending on a magnetizing current from the inverter. The magnetize device passes a magnetizing current that is over a magnetization saturation zone of magnetic material of the variable magnet. This system improves a flux repeatability of the variable magnet and a torque accuracy.
摘要:
An ECU sets target value of a system voltage based on an electric power loss of a motor generator and an inverter and controls a voltage boost converter. The ECU calculates the target value of the system voltage using a function expression generated, for each operating point of the motor generator, by approximating a loss characteristic which represents change of the electric power loss with respect to change of the system voltage, by a quadratic expression or a linear expression of the system voltage.
摘要:
A motor in an electric vehicle can be controlled by receiving a torque command value, calculating a first flux value corresponding to a determinable efficiency of the electric vehicle at the torque command value, calculating a first torque-producing current value as a function of the torque command value and of the first flux value, and using the first flux value and the first torque-producing current value to control the motor to propel the electric vehicle.
摘要:
A controller able to efficiently operate an electric motor of an axial air-gap type as an electric motor and an electricity generator is provided.The controller of the electric motor (3) of the axial air-gap type has a rotor (11) having a permanent magnet, and a first stator (12a) and a second stator (12b) oppositely arranged through the rotor (11) in a rotation axis direction of the rotor (11); wherein the controller includes a first electric current command determining section (30) for supplying a driving electric current from a first power source (38a) to an armature winding (13a) of the first stator (12a), and rotating the rotor (11); a first electric current control section (40a); a second electric current command determining section (37) for charging a second power source (39) by electric power generated in an armature winding (13b) of the second stator (12b) when the rotor (11) is rotated by the supply of the driving electric current to the armature winding (13a) of the first stator (12a); and a second electric current control section (40b).
摘要:
Methods and systems are provided for controlling permanent magnet machines under varying loads. The method comprises generating a d-axis voltage command and a q-axis voltage command, producing a modified d-axis current command based on the q-axis voltage command and a d-axis current command, converting the modified d-axis current command to a modified d-axis voltage command, and transmitting the modified d-axis voltage command and the q-axis voltage command to the PM machine. The d-axis voltage command is based on a d-axis current command.
摘要:
An object is to provide a driving device capable of detecting a current of a motor without any trouble even in a low rotation speed/low load state to continue a sensor-less vector control, in a case where the motor is driven by the sensor-less vector control, and the driving device comprises: a main inverter circuit for applying a pseudo alternating voltage to a permanent magnet type motor M to drive the motor; a current sensor 6 which detects the current flowing through the motor; and a control circuit which controls the main inverter circuit. Based on an output of the current sensor, the control circuit separates the current flowing through the motor into a torque current component and a field current component to control commutation of the main inverter circuit by the sensor-less vector control. In a case where the motor is operated in a predetermined low rotation speed region and/or the motor is in a predetermined low load state, the field current component is passed in such a direction as to weaken a magnetic flux of a permanent magnet.
摘要:
A permanent magnet synchronous machine is controlled according to a d-axis current command Idse* and a q-axis current command Iqse* needed to achieve a desired response of the machine. An actual d-axis current Idse and an actual q-axis current Iqse are sensed and an angular velocity nullr of the machine is sensed. A d-axis voltage command Vdse* is determined using a first proportional-integral regulator responsive to a d-axis current error nullId, a q-axis current error nullIq, and the angular velocity nullr. The first proportional-integral regulator includes a first weighted higher order term comprising a product of a first weighting factor, the angular velocity nullr, and the q-axis current error nullIq. A q-axis voltage command Vqse* is determined using a second proportional-integral regulator responsive to the d-axis current error nullId, the q-axis current error nullIq, and the angular velocity nullr, wherein the second proportional-integral regulator includes a second weighted higher order term comprising a product of a second weighting factor, the angular velocity nullr, and the d-axis current error nullId.