Abstract:
An apparatus and associated method that contemplate a data storage disc and a motor supporting the disc in rotation. Control circuitry operates to spin up the disc drive by accelerating the motor to a steady state speed by: beginning the spin up by energizing the motor with a primary power; comparing an amount of auxiliary power that is available from a battery to a predefined threshold; and before the motor is accelerated to the steady state speed and if the threshold comparison is favorable, then boosting the primary power by discharging the battery for a predetermined boost interval.
Abstract:
Various embodiments include determining an alternating current (AC) voltage and frequency of a supply voltage coupled to a circuit input. The circuit includes a soft starter circuit that is coupled between the circuit input and a first side of an AC motor. A stator winding configuration of the AC motor is determined. A control transformer is configured in response to the AC voltage and frequency, wherein the control transformer is coupled to the circuit input. A jumper device is configured on a second side of the AC motor in response to the stator winding configuration of the AC motor.
Abstract:
A method and system for reducing rollback in a counterbalancing system as a holding brake is released is disclosed. A limited amount of movement of a drive shaft is present in the holding brake. A motor drive provides current to the motor with the holding brake set such that a torque is applied at the drive shaft. The current is controlled to generate torque in both directions. The limited amount of movement in the brake may be used to determine a direction and magnitude of torque required to support a mechanical load being applied to the motor. The motor drive then provides a current to generate the necessary torque required to support the load prior to releasing the holding brake.
Abstract:
The invention relates to a method and a control unit, which makes it possible to reliably detect in an electric vehicle whether or not an electric machine is in a blocked state. For this purpose, a current rotational speed of the electric machine (1) is monitored using a control unit (7). If a non-rotating state is detected, the electric machine (1) is actuated specifically for increasing a in torque. The current rotational speed is further monitored, in particular for an increase of the current rotational speed of the electric machine, at least a short-term one, for tensioning a drive train (3) against a wheel (5) blocked due to external influences, for example. If this is not the case, it is assumed that the electric machine (1) is blocked, and a corresponding blocking signal is generated. If the electric machine (1) is detachably connected to the wheel (5) via a coupling (19), it can be additionally provided that once the non-rotating state is detected, the coupling (19) is disengaged in order to see if the electric machine (1) will react to a request for an increased torque with an increased rotational speed, or if this does not happen due to a blocked electric machine.
Abstract:
A control device for the vibration generation device includes the vibration generation device including a stator, and a rotor provided so as to be able to rotate around a predetermined axis with respect to the stator, and having a weight having a gravity center at a position shifted from the predetermined axis, and a control section adapted to control a start-up period maximum voltage value, which is a maximum voltage value of a drive signal to be applied to the vibration generation device in a start-up period, to become larger than a steady operation period voltage value, which is a voltage value of the drive signal to be applied to the vibration generation device in a steady operation period.
Abstract:
A system for reducing inrush loading when a source power is restored includes a device for switching power that selectively connects a load to the source of power and a circuit for measuring the AC voltage at the source and
Abstract:
An apparatus and associated method that contemplate spinning up an electric motor to an operational speed by accelerating the motor with a primary power, and before the motor is accelerated to the operational speed, boosting the primary power with an auxiliary power for a predetermined interval.
Abstract:
A power tool system includes: a power tool including an AC motor; a portable battery pack; and a power supply device that converts a DC power supplied from the portable battery pack into an AC power to supply the AC power to the AC motor.
Abstract:
A method for controlling a controlled switch operates a power supply of an electric motor from an AC voltage source. The method includes actuating closure of the controlled switch, an instant of actuation of which is dependent on a value characteristic of a value of an electric voltage across terminals of the controlled switch. A control device for such a controlled switch includes elements for implementing the method.
Abstract:
A device for improving efficiency of an induction motor that soft-starts the motor by applying a voltage to the motor that is substantially less than the rated voltage then gradually increasing the voltage while monitoring changes in current drawn by the motor, thereby detecting when maximum efficiency is found. Once maximum efficiency is found, the nominal motor current is found and operating ranges are set. Now, the voltage to the motor is increased/decreased by measuring the phase angle between the voltage and the current to the motor and increasing the voltage when the phase angle is less than a minimum phase angle (determined during soft-start) and decreasing the voltage when the phase angle is greater than or equal to the minimum phase angle as long as the voltage does not fall below a minimum voltage determined during soft-start.