Abstract:
In the nitride semiconductor device of the present invention, an active layer 12 is sandwiched between a p-type nitride semiconductor layer 11 and an n-type nitride semiconductor layer 13. The active layer 12 has, at least, a barrier layer 2a having an n-type impurity; a well layer 1a made of a nitride semiconductor that includes In; and a barrier layer 2c that has a p-type impurity, or that has been grown without being doped. An appropriate injection of carriers into the active layer 12 becomes possible by arranging the barrier layer 2c nearest to the p-type layer side.
Abstract:
There is described a high speed vertical-cavity surface-emitting laser (VCSEL) comprising a substrate and first and second distributed Bragg reflectors (DBRs) disposed on the substrate, each comprising a stack of layers of alternating refractive index. A resonant cavity is disposed between the DBRs and an active region disposed in the resonant cavity. The resonant cavity is formed of material having low refractive index and has an optical thickness in a direction perpendicular to the substrate of ½λ, where λ is the wavelength of light emitted by the VCSEL.
Abstract:
In the nitride semiconductor device of the present invention, an active layer 12 is sandwiched between a p-type nitride semiconductor layer 11 and an n-type nitride semiconductor layer 13. The active layer 12 has, at least, a barrier layer 2a having an n-type impurity; a well layer 1a made of a nitride semiconductor that includes In; and a barrier layer 2c that has a p-type impurity, or that has been grown without being doped. An appropriate injection of carriers into the active layer 12 becomes possible by arranging the barrier layer 2c nearest to the p-type layer side.
Abstract:
An active layer is formed by arranging a plurality of quantum-well layers and a plurality of barrier layers alternatively. An amount of band discontinuity in a conduction band between a barrier layer that is sandwiched by the quantum-well layers and adjacent quantum-well layers is equal to or more than 26 meV and less than 300 meV, so that an overflow of injected carriers due to a thermal excitation between the quantum-well layers is intentionally caused to make the carrier density uniform between the quantum-well layers.
Abstract:
An apparatus and a method are provided for generating an optical pulse by using a current pulse. The arrangement is based on a specific semiconductor structure, where a carrier injector is separated from the optically active region by a potential barrier for the injected carriers and on low carrier mobility in the semiconductor component, which features give rise to formation of a current-assisted strong electric field in the optically active region at moderate current densities before positive net gain is achieved. The current-assisted electric field broadens the gain spectrum in the active layer thus suppressing positive net gain and permitting carrier accumulation in the active layer. When the current pulse is stopped, the positive net gain is achieved, giving rise to an optical emission from the active layer.
Abstract:
A semiconductor laser basically includes a first cladding layer; an active layer; a second cladding layer; and a current constriction means for defining a current injection region in the active layer. The active layer has a gain region which acquires an optical gain by current injection thereto; a saturable absorption region in which current injection thereto little occurs and light effusion thereto occurs; and an outside region, being in contact with the saturable absorption region, in which current injection thereto little occurs and light effusion thereto little occurs. In this semiconductor laser, an effective band gap of the saturable absorption region is set to be larger than that of the outside region. With this configuration, carriers in the saturable absorption region are efficiently migrated to the outside region, so that the carrier lifetime in the saturable absorption region is actually shortened. As a result, the semiconductor laser can sustain the self pulsation at a high light output and a high operational temperature, and further can be produced with a good production yield.
Abstract:
A semiconductor laser device includes a substrate, a p-type cladding layer and a n-type cladding layer provided on the substrate, and an active layer provided between the p-type cladding layer and the n-type cladding layer, having at least two barrier layers and at least two well layers, the barrier layers and the well layers being disposed alternately. Band offsets in a conduction band between the barrier layers and the well layers are provided so as to increase from the n-type cladding layer aide toward the p-type cladding layer side.
Abstract:
A semiconductor laser basically includes a first cladding layer; an active layer; a second cladding layer; and a current constriction means for defining a current injection region in the active layer. The active layer has a gain region which acquires an optical gain by current injection thereto; a saturable absorption region in which current injection thereto little occurs and light effusion thereto occurs; and an outside region, being in contact with the saturable absorption region, in which current injection thereto little occurs and light effusion thereto little occurs. In this semiconductor laser, an effective band gap of the saturable absorption region is set to be larger than that of the outside region. With this configuration, carriers in the saturable absorption region are efficiently migrated to the outside region, so that the carrier lifetime in the saturable absorption region is actually shortened. As a result, the semiconductor laser can sustain the self pulsation at a high light output and a high operational temperature, and further can be produced with a good production yield.
Abstract:
The present invention provides another active layer structure provided in a light emission device for emitting a light with a predetermined wavelength. The active layer structure comprises a multiple quantum well structure and at least a second well layer. The multiple quantum well structure comprises alternating laminations of first well layers showing electroluminescence and potential barrier layers. The first well layers have a first set of energy band gaps which are uniform and corresponds to the predetermined wavelength, provided that energy band gap is defined as a difference between a ground level of electrons in conduction band and a ground level of holes in valence band. The second well layer is provided within any of the potential barer layers so that the second well layer is separated via the potential barrier layers from the first well layers. The second well layer has a second energy band gap in a range which is above the first set of energy band gaps and below a set of forbidden band widths of the potential barrier layers. The range of the second energy band gaps is defined so that the second well layer exhibits carrier accumulations and no electro-luminescence to thereby ensure that carriers accumulated in the second well layer are injected into the first well layers when the first well layers are deficient in carriers for the electro-luminescence.
Abstract:
The present invention provides another active layer structure provided in a light emission device for emitting a light with a predetermined wavelength. The active layer structure comprises a multiple quantum well structure and at least a second well layer. The multiple quantum well structure comprises alternating laminations of first well layers showing electroluminescence and potential barrier layers. The first well layers have a first set of energy band gaps which are uniform and correspond to the predetermined wavelength. An energy band gap is defined as a difference between a ground level of electrons in conduction band and a ground level of holes in valence band. The second well layer is provided within any of the potential barrier layers so that the second well layer is separated by the potential barrier layers from the first well layers. The second well layer has a second energy band gap in a range which is above the first set of energy band gaps and below a set of forbidden band widths of the potential barrier layers. The range of the second energy band gaps is defined so that the second well layer exits carrier accumulations and no electroluminescence to thereby ensure that carriers accumulated in the second well layer are injected into the first well layers when the first well layers are deficient in carriers for the electro-luminescence.