Abstract:
Various embodiments of a millimeter-wave wireless point-to-point or point-to-multipoint communication system which maintains a stable communication link even in the face of mechanical vibration of the transceivers. The system comprises a transmitter, a receiver, a high-gain antenna, and allied equipment as described. In various embodiments, the system is planned and engineered to maintain the communication link even at a maximum vibration of X/2 degrees in either an up or down direction. In some embodiments, the system uses the energy of a concentrated horizontal beam-width to compensation for the energy pattern in a dispersed vertical beam-width. The system may be set to compensate for different degrees of vibration. The system may be set to maintain different degrees of communication gain.
Abstract:
A communications system including an antenna array and electronics assembly that may be mounted on and in a vehicle. The communication system may generally comprise an external subassembly that is mounted on an exterior surface of the vehicle, and an internal subassembly that is located within the vehicle, the external and internal subassemblies being communicatively coupled to one another. The external subassembly may comprise the antenna array as well as mounting equipment and steering actuators to move the antenna array in azimuth, elevation and polarization (for example, to track a satellite or other signal source). The internal subassembly may comprise most of the electronics associated with the communication system.
Abstract:
An antenna for communicating with a satellite from a moving vehicle. The antenna comprises a transmitter for generating a transmission signal, main and sub reflectors, and a waveguide associated with the transmitter for conducting the transmission signal toward the sub reflector. The sub reflector is configured for redirecting the transmission signal toward the main reflector; the main reflector is configured for projecting the redirected transmission signal as an antenna beam toward the satellite.
Abstract:
Desired positioning of a sensor, such as an antenna, is provided. The system includes a platform which can be a vehicle, such as an aircraft. The sensor is connected to the platform by means of a mount. Alignment data is obtained in order to compensate for any difference in reference coordinate systems between the platform and the mount when the platform is in a first position. The alignment data can be obtained by incremental scanning of the sensor relative to an object that transmits a signal to the sensor. The strengths or amplitudes of the signals at the incremental positions can be utilized in calculating or arriving at the alignment data used to compensate for any misalignments between the coordinate systems of the platform and the mount. When the movable platform is in another position, the alignment data is used to desirably position the sensor.
Abstract:
A motion compensation method and system is included in a radar antenna system mounted on a moving platform which is subject to pitch, yaw and roll. The radar antenna system includes a main array antenna, and an auxiliary antenna. The auxiliary channel associated with the auxiliary antenna utilizes roll, pitch and yaw angle motion compensations as its auxiliary antenna always steers a horizontal fan shape beam at the horizon to blank any surface (land or sea) based EM interferences. Such motion compensations are provided by a ship motion compensator component and process included within the antenna system. The ship motion compensator component in response to platform motion signals indicative of changes in platform motion angles generates new sets of values using an initial set of weighting coefficient values as a function of such angle motion changes. This produces changes in both amplitude and phase weighting coefficient values which results in both the quadrant phase rotation and the element weighting rotation. The process steers and spreads out the received auxiliary antenna pattern making sidelobe coverage broad enough to compensate for such changes in platform motion.
Abstract:
The present invention relates to a system for mast vibration compensation implemented in a communication system including a first node and a second node. The first node comprises a first adaptive antenna mounted in a mast; a receiver connected to said antenna; and a spatial and temporary processing system. The first adaptive antenna is controlled by a first correction signal generated in the spatial and temporary processing system. The correction signal is based on a parameter that indicates that a radio link alignment with a second node is degrading due to mechanical vibrations in the mast. The invention also relates to a method for mast vibration compensation.
Abstract:
A remotely controllable, tiltable platform supports a radar transmitter/receiver for rotational movement of the radar relative to a mounting on a vessel, such as a mast of a sailboat or the superstructure of a power boat. A cowling extends upward from the foundation plate and a stationary hinge plate, parallel to the foundation plate, is secured to the top of the cowling. A top antenna mounting plate is hingedly secured to the stationary hinge plate. An actuator is positioned within the cowling to controlled movement of the top antenna mounting plate to maintain the radar level with the horizon. Alternatively, an A-frame structure mounts the leveling system to a mast of a sailboat.
Abstract:
A shipboard search radar in which an antenna beam is stepped up and down in elevation to keep the beam pointed approximately toward the horizon even though the ship may be rolling and/or pitching.
Abstract:
Platform motion of an airborne radar system of the moving target indicator type is compensated for by an adaptive displaced phase center antenna arrangement. The signals detected by the two receiving beams are combined to form sum and difference signals. Thereafter, the sum signals have subtracted therefrom delayed sum, difference and delay difference signals which are weighted by coefficients determined by cross-correlating these signals and the output signal obtained from the above subtraction. The system thus combines the DPCA and the side lobe cancellation concept to eliminate signals received from stationary targets. The receiving beams may be squinted to compensate for antenna rotation.