Abstract:
The invention relates to a method for operating a fuel cell system, comprising a cooling circuit for cooling at least one fuel cell, wherein a coolant circulating in the cooling circuit is cooled with a coolant cooler, which also has air flowing through it. The air is supplied by a fan assembly. The fuel cell system also comprises an evaporative cooling unit, which, upstream of the coolant cooler, introduces water into the air supplied by the fan assembly. An increased efficiency of the fuel cell system alongside sufficient cooling of the at least one fuel cell is achieved in that the evaporative cooling unit introduces water at a maximum rate before the fan assembly reaches its maximum air mass flow. The invention also relates to a fuel cell system of this type, as well as a motor vehicle comprising a fuel cell system of this type.
Abstract:
A cooling subsystem of a fuel cell assembly that employs the Rankine cycle to use the potential energy of a thermally pressurized fluid to generate electrical power. Waste heat from a fuel cell stack is transferred to working fluid in a heat exchanger. The working fluid in the condensed phase is pressurized, evaporated in a boiler or evaporator, and then fed to an expansion turbine which in turn provides rotary motion to an electric generator to generate useful electrical power. The fluid leaves the turbine as a lower pressured vapor, and is then condensed back to a fluid and pumped back to the evaporator to repeat the process.
Abstract:
In one embodiment, systems and methods include using an evaporator coil with a solid oxide fuel cell generator to generate energy for an aircraft vehicle. The system comprises a solid oxide fuel cell generator operable to generate energy. The system further comprises a first tank fluidly coupled to the solid oxide fuel cell generator configured to discharge a fluid to the solid oxide fuel cell generator and to receive the fluid from an evaporator coil coupled to the solid oxide fuel cell generator. The system further comprises a second tank fluidly coupled to the first tank and having a volume of the fluid, wherein the second tank is configured to discharge the fluid to the first tank, wherein the evaporator coil receives the discharged fluid from the second tank and increases the temperature of the discharged fluid prior to the first tank receiving the discharged fluid.
Abstract:
A fuel cell system includes a combined cooling circuit for a motor vehicle that provides a method of cooling a fuel cell of a fuel cell system.
Abstract:
The fuel cell vehicle includes a fuel cell placed in a front room, an air compressor placed below the fuel cell in the front room to supply the fuel cell with cathode gas, and a refrigerant supply pump placed below the fuel cell in the front room to supply the fuel cell with a refrigerant. The refrigerant supply pump is placed forward of the air compressor.
Abstract:
A fuel cell stack including a plurality of fuel cells, each end of the fuel cell stack having a heater plate disposed between a current collector plate and an end plate, each heater plate being thermally insulated from a respective end plate, wherein each heater plate comprises a heating element in the form of an electrically conductive track; and, wherein the heater plate comprises a pair of terminals extending from an edge of the heater plate, the terminals being separated by an air gap.
Abstract:
A bipolar plate having side ports is described for use with an electrochemical cell. A side port having a high aspect ratio will have an effect on the partial pressure of the reactant gasses and prevent high pressure drop of the working fluid transport to the electrodes. The membrane electrode assembly may have a high aspect ratio and the port opening may be on the long side of the bipolar plate. The electrochemical cell may be configured in an enclosure that is maintained at less than atmospheric pressure which further increases the need for low pressure drop fuel deliver to the electrodes, especially in electrochemical compressor applications.
Abstract:
A heat transfer system includes a fuel cell module that produces heat and water, and a thermal energy storage module that stores the heat produced by the fuel cell module. The thermal energy storage module includes a phase-change material. A conduit couples the fuel cell module to the thermal energy storage module. The conduit is oriented to channel the water produced by the fuel cell module through the thermal energy storage module.
Abstract:
A direct liquid feed fuel cell system that includes a housing, a fuel cell stack in which air flow channels are formed, in the housing; and a fan that supplies air between the housing and a part of the air flow channels, wherein the fuel cell stack is obliquely mounted toward the fan. The fuel cell system can be arranged so that the airflow channels are substantially vertical, in order for air to be supplied between the housing and an upper part of the airflow channels, with the fuel cell stack downwardly obliquely mounted toward the fan. Furthermore, an outlet in the housing on an opposite side of the fuel cell stack from the fan can allow air that has passed through the air flow channels to be exhausted from the fuel cell system after passing through a space between a part of the fuel cell stack and the housing.
Abstract:
A cooling system of a vehicle with a fuel cell includes an absorbent circuit with an absorber tank, a regenerator tank, an absorbent pump and a first pressure reduction means and a coolant circuit with a condenser connected to a steam outlet of the regenerator tank, a second pressure reduction means and an evaporator arranged between a steam inlet of the absorber tank and the second pressure reduction means. The regenerator tank is designed to desorb the coolant in solution in the absorbent by absorbing a first quantity of heat and to introduce it in a vaporous state into the condenser. The evaporator is designed to evaporate the coolant while absorbing a second quantity of heat and to introduce it in the vaporous state into the absorber tank. At least one of the first and of the second quantity of heat could be provided by the fuel cell.