摘要:
The technology concerns methods for stabilizing slurries and/or electrophoretic deposition (EPD) bath suspensions for the preparation of electrodes and/or separation area or any other coating and specifically, to electrodes and separators for use in energy storage devices.
摘要:
An anodic member, an electrochemical device having an anodic member, and a method for manufacturing an anodic member for a lithium-ion battery. The method uses nanoparticles of an electrically insulating material that conducts lithium ions, is stable in contact with metallic lithium, does not insert lithium at potentials of between 0 V and 4.3 V with respect to the potential of the lithium, and has a relatively low melting point.
摘要:
The present invention relates to methods for producing anode materials for use in nonaqueous electrolyte secondary batteries. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a solution containing metals ions and a dissolution component. When the anode material is contacted with the solution, the dissolution component dissolves a part of the semiconductor material in the anode material and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer. The anode material of the present invention can be in a monolithic form or a particle form. When the anode material is in a particle form, the particulate anode material can be further shaped and sintered to agglomerate the particulate anode material.
摘要:
The present invention relates to methods for producing anode materials for use in nonaqueous electrolyte secondary batteries. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a solution containing metals ions and a dissolution component. When the anode material is contacted with the solution, the dissolution component dissolves a part of the semiconductor material in the anode material and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer. The anode material of the present invention can be in a monolithic form or a particle form. When the anode material is in a particle form, the particulate anode material can be further shaped and sintered to agglomerate the particulate anode material.
摘要:
A nanostructured composite electrode is provided that includes a pair of conductive metal foils and a multiplicity of ordered nanostructures formed on each conductive metal foil. The ordered nanostructures include functionalized carbon multi-walled nanotubes electrophoretically deposited onto the metal foils. The ordered nanostructures also include synthesized nanoparticles electrophoretically deposited onto each of the carbon multi-walled nanotubes and the metal foils in proportion to the concentration of the carbon multi-walled nanotubes while in a stable colloidal suspension with the synthesized nanoparticles during electrophoretic deposition.
摘要:
A method for manufacturing a gas diffusion electrode for use as an oxygen cathode in a chlor-alkari electrolytic and in a fuel cell in a short time through a simple operation, a gas diffusion electrode, and a fuel cell employing the gas diffusion electrode as a compositional material. A gas diffusion electrode material principally comprising micro particles of fluororesin dispersed in dispersion medium is deposited, by electrophoresis, on the surface of a conductive base material to form a porous deposit containing fluororesin serving as the gas supply layer and/or the reaction layer of the gas diffusion electrode.
摘要:
The invention relates to methods for producing a porous electrode, said electrode comprising a layer deposited on a substrate, being binder-free and having a porosity of more than 30 and less than 50 volume %, and pores having an average diameter of less than 50 nm, said method comprising:
(a) providing a colloidal suspension containing aggregates or agglomerates of nanoparticles of at least one material P having an average primary diameter of 80 nm or less, said aggregates or agglomerates having an average diameter comprised between 80 nm and 300 nm, (b) providing a substrate, (c) depositing a mesoporous, electrode layer on the substrate by electrophoresis, ink-jet, doctor blade, roll coating, curtain coating or dip-coating, from the colloidal suspension provided in step (a); (d) drying said layer, preferably in an air flow, and (e) consolidating the porous, preferably mesoporous electrode layer obtained in step (d) by pressing and/or heating.
摘要:
A method for manufacturing an anode having a porosity of between 25% and 50% by volume, wherein: (a) a substrate and a colloidal suspension or a paste composed of monodispersed primary nanoparticles, in the form of agglomerates or dispersed, is provided of at least one active material of anode A selected from niobium oxides and mixed oxides of niobium with titanium, germanium, cerium, lanthanum, copper or tungsten, with an average primary diameter D50 of between 2 nm and 100 nm; (b) on at least one face of said substrate a layer of the colloidal suspension or paste provided in step (a) is deposited by a method selected from the group including: electrophoresis, a printing process and preferably inkjet printing or flexographic printing, a coating method and preferably doctor blade coating, roll coating, curtain coating, dip coating or through a slot die; (c) the layer obtained in step (b) is dried and consolidated by pressing and/or heating to obtain a porous layer.
摘要:
An apparatus for forming an electrode film mixture can have a first source including a polymer dispersion comprising a liquid and a polymer, a second source including a second component of the electrode film mixture, and a fluidized bed coating apparatus including a first inlet configured to receive from the first source the dispersion, and a second inlet configured to receive from the second source the second component.