Abstract:
An embodiment is directed to a battery module mounting area of an energy storage system. The battery module mounting area includes a first set of battery module compartments arranged along a first longitudinal side of the battery module mounting area, and a second set of battery module compartments arranged along a second longitudinal side of the battery module mounting area. Each battery module compartment in the first and second sets of battery module compartments includes an insertion-side through which a battery module is configured to be inserted into the battery module compartment and/or removed from the battery module compartment. The insertion-side of each battery module compartment in the first and second sets of battery module compartments is configured to be closed via an insertion-side cover to form a battery housing with a closed compartment profile that is characterized by each battery module compartment being sealed from at least one other battery module compartment in the battery housing.
Abstract:
The battery is sealed by a sealing member including a safety valve for exhausting the gas generated in the battery to the outside of the battery when the pressure in the battery is increased. A part of the sealing member is formed of a member having a melting point lower than that of high-temperature gas generated in the abnormal time and having a ratio of an area of an opening of the battery case to an area of a gas exhaust hole is 3.0×10−5 or more and 9.1×10−3 or less.
Abstract:
A battery housing has a body and a lid mateable with the body. The body and the lid, when mated, provide a chamber dimensioned to hold at least one battery; and a venting passageway from the chamber. At least a portion of at least one of the body and the lid comprises an intumescent flame retardant material with an expansion ratio sufficient to drive gas from the chamber through the venting passageway and to seal the chamber when the material intumesces in the event of thermal runaway of a battery housed in the chamber.
Abstract:
Processes for preventing or containing a thermal runaway event in a battery cell are provided that include localizing an effective amount of a thermally decomposable flame retardant to a target site on a cell or battery, where the flame retardant is localized so as not to coat the entire cell or large portions of the cell. It was discovered that targeted localization of flame retardant material(s) improves cell safety by preventing thermal runaway under adverse operating conditions.
Abstract:
Provided is a lithium ion battery including a battery can, a battery core received in the battery can, electrolyte filled in the battery can, and a battery cover assembled to the battery can. The battery can or the battery cover is provided with a pressure relief valve, and the pressure relief valve is coupled with a mesh cover defining a number of through holes therein. According to the present invention, when thermal runaway occurs to the lithium ion battery, the pressure relief valve breaks timely. Only gases and electrolyte vapor can pass through the mesh cover. Solid particles cannot pass through the mesh cover. Therefore, ignition of the flammable gases, the electrolyte vapor and the high temperature solid particles in the surrounding air afar from the pressure relief valve is avoided and the safety performance of the lithium ion battery can be improved remarkably.
Abstract:
A battery cover with a fire-extinguishing function is provided, which includes a fire-extinguishing tank disposed on an inner surface of the battery cover to store compressed air and fire-extinguishing fluid, so that the fire-extinguishing tank bursts and the fire-extinguishing fluid contained in the tank is sprayed to the battery to thereby suppress a fire in the case where the fire breaks out inside the battery due to overheat or electric leak of the battery. The battery cover with a fire-extinguishing function is coupled to an opening portion of a case that accommodates the battery therein to protect terminals of the battery in a battery pack, and includes the fire-extinguishing tank disposed on an inner surface of the battery cover to store the fire-extinguishing fluid therein.
Abstract:
A battery housing has a body and a lid mateable with the body. The body and the lid, when mated, provide a chamber dimensioned to hold at least one battery; and a venting passageway from the chamber. At least a portion of at least one of the body and the lid comprises an intumescent flame retardant material with an expansion ratio sufficient to drive gas from the chamber through the venting passageway and to seal the chamber when the material intumesces in the event of thermal runaway of a battery housed in the chamber.
Abstract:
Disclosed is a battery pack which includes: a battery case comprising a first case member and a second case member, which in combination define an enclosed space, the first case member comprising a first sealing portion, the second case member comprising a second sealing portion, wherein the first and second sealing portions adhere to each other for sealing the enclosed space; an electrode assembly contained in the enclosed space, the electrode assembly comprising a first electrode plate, a second electrode plate, and a separator disposed between the first and second electrode plates; an electrolyte contained in the enclosed space; and a pocket formed in at least one of the first and second sealing portions, wherein the pocket contains an ionic material.
Abstract:
A thermal management system is provided that minimizes the effects of thermal runaway within a battery pack. The system is comprised of a sealed battery pack enclosure configured to hold a plurality of batteries, where the battery pack enclosure is divided into a plurality of sealed battery pack compartments. The system also includes a plurality of battery venting assemblies, where at least one battery venting assembly is integrated into each of the sealed battery pack compartments, and where each of the battery venting assemblies includes an exhaust port integrated into an outer wall of the battery pack compartment and a valve, the valve being configured to seal the exhaust port under normal operating conditions and to unseal the exhaust port when at least one of the batteries within the battery pack compartment enters into thermal runaway.
Abstract:
A case for portable laptop computers and the like including removed batteries to contain and control the bi-products of combustion associated with the unintentional and unexpected combustion of electronic component batteries typically occurring during the thermal runaway of the batteries. The fire containment case controls heat, flame and toxic gases associated therewith. The case has an airtight seal with integrated filters to trap and neutralize the smoke and gas released during combustion. A variety of heat insulation both active and passive can be used along with condition status instruments, and fire suppression can also be provided in core construction and external adaption input suppression inlets.