Abstract:
An apparatus for coating a substrate is provided that includes a racetrack-shaped plasma source having two straight portions and at least one terminal turnaround portion connecting said straight portions. A tubular target formed of a target material that forms a component of the coating has an end. The target is in proximity to the plasma source for sputtering of the target material. The target is secured to a tubular backing cathode, with both being rotatable about a central axis. A set of magnets are arranged inside the cathode to move an erosion zone aligned with the terminal turnaround toward the end of the target as the target is utilized to deposit the coating on the substrate. Target utilization of up to 87 weight percent the initial target weight is achieved.
Abstract:
The present invention relates to a method and apparatus for real-time monitoring and controlling surface area erosion of a sputter target assembly utilized in a physical vapor deposition process.
Abstract:
The present invention relates to a method and apparatus for real-time monitoring and controlling surface area erosion of a sputter target assembly utilized in a physical vapor deposition process.
Abstract:
An apparatus and method for measuring the erosion profile of a metallic target in a sputtering device are provided by inserting a thin sensor into a gap between the target and a substrate pedestal. The sensor is configured to emit an energy beam toward the surface of the target and to detect a reflection of the energy beam. The sensor may comprise a source element configured to emit a collimated light beam and a plurality of detectors arranged in a linear array. The sensor may also comprise optical fibers configured to reduce the size of the sensor. The detectors are positioned relative to the source element so that one of the detectors in the array will be illuminated by a reflection of the collimated light beam. The distance from the sensor to the target may be derived from the position of the detector illuminated by the reflected beam.
Abstract:
A method of constructing increased life sputter targets and targets made by the method are disclosed. The method comprises starting with a precursor target design or profile and making magnetic field strength measurements along the radial surface of same and at a plurality of vertical dimensions above the surface. An optimal magnetic field strength ratio is provided between the erosion tracks of the target. The vertical dimension of the material to be added to one of the erosion tracks is determined and then the height of the other erosion track is calculated by utilizing this optimal magnetic field strength ratio.
Abstract:
In one embodiment, a magnetron assembly comprises a plurality of magnets and a yoke configured to hold the plurality of magnets in at least four independent linear arrays. The plurality of magnets is arranged in the yoke so as to form a pattern comprising an outer portion and an inner portion. The outer portion substantially surrounds the perimeter of the inner portion. The magnets used to form the outer portion have a first polarity and the magnets used to form the inner portion having a second polarity. The outer portion of the pattern comprises a pair of elongated sections that are substantially parallel to one another. The outer portion of the pattern comprises a pair of turnaround sections, wherein each turnaround section substantially spans respective ends of the pair of elongated sections and wherein each turnaround section comprises a plurality of magnets having the first polarity. Other embodiments are described.
Abstract:
When a magnetron is scanned about the back of a target in a selected complex path having radial components, the erosion profile has a form depending upon the selection of paths. A radial erosion rate profile for a given magnetron is measured. Periodically during scanning, an erosion profile is calculated from the measured erosion rate profile, the time the magnetron spends at different radii, and the target power. The calculated erosion profile may be used to indicate when erosion has become excessive at any location prompting target replacement or to adjust the height of the magnetron above the target for repeated scans. In another aspect of the invention, the magnetron height is dynamically adjusted during a scan to compensate for erosion. The compensation may be based on the calculated erosion profile or on feedback control of the present value of the target voltage for a constant-power target supply.
Abstract:
A PVD target structure for use in physical vapor deposition. The PVD target structure includes a consumable slab of source material and one or more detectors for indicating when the slab of source material is approaching or has been reduced to a given quantity representing a service lifetime endpoint of the target structure.
Abstract:
A preferred sputter target assembly (10, 10′) comprises a target (12, 12′), a backing plate (14, 14′) bonded to the target (12, 12′) along an interface (22, 22′) and dielectric particles (20, 20′) between the target (12, 12′) and the backing plate (14, 14′). A preferred method for manufacturing the sputter target assembly (10, 10′) comprises the steps of providing the target (12, 12′) and the backing plate (14, 14′); distributing the dielectric particles (20, 20′) between mating surfaces (24, 26) of the target (12, 12′) and the backing plate (14, 14′), most preferably along a sputtering track pattern on one of the mating surfaces; and bonding the target (12, 12′) to the backing plate (14, 14′) along the mating surfaces (24, 26). A preferred method for sputtering in accordance with the invention comprises the steps of applying electrical power to the sputter target (50, 160); causing the sputter target assembly (50, 160) to produce an electromagnetic signal (not shown) when a target end-of-life condition exists; and monitoring the sputter target assembly (50, 160) to detect the electromagnetic signal.
Abstract:
Apparatus and methods for measuring characteristics of a metallic target as well as other interior surfaces of a sputtering chamber. The apparatus includes a sensor configured to emit an energy beam toward a surface of interest and to detect an energy beam therefrom, the detected energy beam being indicative of parameters of a characteristic of interest of the surface of interest. Quantitative and qualitative characteristics of interest may be determined. A sputtering system including the apparatus and operable according to the methods of the invention is also disclosed.