Abstract:
X-ray target element is comprised of a planar wafer. The planar wafer element includes a target layer and a substrate layer. The target layer is comprised of an element having a relatively high atomic number and the substrate layer is comprised of diamond. The substrate layer is configured to support the target layer and facilitate transfer of thermal energy away from the target layer.
Abstract:
X-ray target element is comprised of a planar wafer. The planar wafer element includes a target layer and a substrate layer. The target layer is comprised of an element having a relatively high atomic number and the substrate layer is comprised of diamond. The substrate layer is configured to support the target layer and facilitate transfer of thermal energy away from the target layer.
Abstract:
Linear ribs are formed radially with a center at a through-hole on one face of an X-ray transmissive film (radiolucent film) in an X-ray transmissive window (radiolucent window) to be used for an X-ray detector (radiation detector). The X-ray transmissive window faces a sample. A beam for irradiation to the sample passes through the through-hole, and X-rays (radiation) are radially emitted on a line extending through the through-hole and enter the X-ray transmissive window. Since the linear ribs are formed radially with the center at the through-hole, even X-rays entering at shallow angles with respect to the X-ray transmissive window are transmitted through the X-ray transmissive window at a probability equivalent to X-rays entering at deep angles. More X-rays are transmitted through the X-ray transmissive window, and thus the X-ray detector can detect X-rays with high efficiency.
Abstract:
An x-ray tube can include an electron-emitter, which can include a tube-shape with a minimum inside diameter of at least 0.5 millimeters. The electron-emitter can provide field-emission of electrons, and thus can avoid the electrical power required for heating, and can avoid degradation due to high temperature of, a thermionic-emission electron-emitter. This type of electron-emitter, with a tube-shape, can have a relatively large electron-emission region, allowing high electrical current without excessive current density.
Abstract:
A radiation generator may include an elongate generator housing having a proximal end and a distal end, a target electrode within the elongate generator housing at the distal end thereof, a charged particle source within the elongate generator housing at the proximal end thereof to direct charged particles at the target electrode. A plurality of accelerator electrodes may be spaced apart within the elongate generator housing between the target electrode and the charged particle source to define a charged particle accelerator section. Each accelerator electrode may include an annular portion having a first opening therein, and a frustoconical portion having a base coupled to the first opening of the annular portion and having a second opening so that charged particles from the charged particle source pass through the first and second openings to reach the target electrode.
Abstract:
Linear ribs are formed radially with a center at a through-hole on one face of an X-ray transmissive film (radiolucent film) in an X-ray transmissive window (radiolucent window) to be used for an X-ray detector (radiation detector). The X-ray transmissive window faces a sample. A beam for irradiation to the sample passes through the through-hole, and X-rays (radiation) are radially emitted on a line extending through the through-hole and enter the X-ray transmissive window. Since the linear ribs are formed radially with the center at the through-hole, even X-rays entering at shallow angles with respect to the X-ray transmissive window are transmitted through the X-ray transmissive window at a probability equivalent to X-rays entering at deep angles. More X-rays are transmitted through the X-ray transmissive window, and thus the X-ray detector can detect X-rays with high efficiency.
Abstract:
The present invention provides an X-ray imaging system for capturing an X-ray image of teeth and a jawbone, including a tubular X-ray generating unit placed in an oral cavity, and a movable X-ray detection unit placed in the oral cavity outer side region corresponding to the X-ray generating unit and corresponding to a face or an X-ray detection unit having a curved surface shape similar to the face.The present invention having the configuration may obtain a teeth X-ray image with a large surface area while minimizing the dose of X-ray exposed to a patient by placing an X-ray generating device in the oral cavity and disposing a movable sensor or a sensor with a large surface area on the outer side of the oral cavity to obtain an X-ray image, reduce excessive X-ray exposure and foreign body sensation in the oral cavity, which a panoramic mode X-ray generating device or an oral sensor-type X-ray generating device in the related art has, to enhance the safety and convenience of the patient, and obtain a clear image with a large surface area, which helps a medical staff in making an exact judgment, with the least number of shootings.
Abstract:
The invention relates to a radiation application apparatus for applying radiation at a location within an object. The radiation application apparatus comprises a transforming unit (2) for being arranged within the object at the location and for transforming ultrasound energy to electrical energy, and a radiation source (4) for being arranged within the object and for generating radiation (5) to be applied at the location within the object, wherein the radiation source (4) is driven by the electrical energy. Since the transforming unit transforms the ultrasound energy to electrical energy being used by the radiation source, it is not necessary to transfer electrical energy to the radiation source, i.e., for example, corresponding cables, which may have to be isolated, are not necessarily required. Insulation problems and corresponding safety problems, which may be present, if cables, in particular, corresponding high voltage cables, are used, can therefore be reduced.
Abstract:
An X-ray generating apparatus for paracentesis of the present invention has an electron emitting portion arranged in an envelope, and a target that emits X-ray by irradiation with electrons that are emitted from the electron emitting portion, and irradiates an affected part in a living body with the X-ray which have been emitted from the target. The apparatus can adjust a region to be irradiated with X-ray, and thereby enables the affected part to be more effectively and efficiently treated with X-ray.The apparatus also includes a front shield which is provided so as to protrude to the outside from the envelope and has an opening that forms a passage of the X-ray which irradiate the affected part, and can adjust a region to be irradiated with X-ray which irradiate the affected part, by the exchange of the front shield.
Abstract:
A miniature X-ray tube for intravascular or intracorporeal radiation treatment in living beings is proposed. The X-ray tube comprises a cylindrical housing section with a longitudinal axis. The miniature X-ray tube also comprises a cylindrical or cylindrical-tube-shaped first field emission cathode arranged concentrically about the longitudinal axis in the housing with a plurality of carbon nanotubes which emit electrons radially outward. The miniature X-ray tube also comprises a second field emission cathode in the housing with a plurality of carbon nanotubes which emit electrons in the direction of longitudinal axis. The miniature X-ray tube only emits little heat and is robust against mechanical stresses.